Supporting Information

CrSe₂/Ti₃C₂ MXene 2D/2D Hybrids as a Promising Candidate for

Energy Storage Applications

Sree Raj K A, ¹ Narad Barman², Namsheer K ¹, Ranjit Thapa² and Chandra Sekhar Rout*,¹

^a Centre for Nano and Material Science, Jain University, Jain global campus, Jakkasandra,

Ramanagaram, Bangalore - 562112, India.

^b Department of Physics, SRM University – AP, Amaravati 522 240, Andhra Pradesh, India.

*Corresponding author: csrout@gmail.com, r.chandrasekhar@jainuniversity.ac.in (CSR);

S1. Calculations

Three electrode configuration-

Areal capacitance (C_{Areal}) from cyclic voltammetry;

$$C_{Areal} = \frac{Area \ of \ CV \ curve}{2 * s * \vartheta * \Delta V} \tag{S1}$$

Where, s is the active area of the electrode, v is the scan rate and ΔV is the potential window.

Areal capacitance (C_{Areal}) from galvanostatic charge discharge;

$$C_{Areal} = \frac{i * \Delta t}{s * \Delta V} \tag{S2}$$

Where, i is the applied current, Δt is the discharge time.

Areal capacitance (C_{Areal}) of ASSS from galvanostatic charge discharge;

$$C_{Areal} = \frac{i * \Delta t}{s * \Delta V} \tag{S3}$$

Energy density of ASSS;

$$E_D = \frac{1}{2}CV^2 \tag{S4}$$

1

Where, C is areal capacitance of ASC, V is the working window of ASC.

Power density of ASSS;

$$P_D = \frac{E_D}{\Delta t} \tag{S5}$$

S2. Supporting Figures

Figure S1: XPS survey spectra of CRX.

Figure S2: Three electrode analysis of $CrSe_2$ and MXene electrodes in 3M KOH. (a) CV profile and (b) GCD profile of $CrSe_2$ electrode, (c) CV profile and GCD profile of MXene electrode.

Figure S3: Comparative GCD performance of CrSe₂, MXene and CRX electrodes at current density of 3 mA/cm².

Figure S4: (a, b) Nyquist plot of the ASSS.

Table S1

Electrode	Electrolyte	Energy Density and	Cyclic Stability	Ref
		Power Density		
PEDOT-GO/U-C	PVA/H ₃ PO ₄	2.2 μ Wh/cm ² at 200	89% (1000	1
		μ W/cm ²	cycles)	
Ti@MnO ₂ PDWS	PVA/LiCl	1.4 μ Wh/cm ² at 580	88% (3500	2
		μ W/cm ²	cycles)	
CF/MnO ₂ //CF/MoO ₃	PVA/KOH	2.7 μ Wh/cm ² at 530	89% (3000	3
(asymmetric)		μ W/cm ²	cycles)	
rGO-Ni-yarn	PVA/H ₃ PO ₄	1.6 μWh/cm ²	96% (10000	4
			cycles)	
3D graphene	PVA/H ₂ SO ₄	2.4 μ Wh/cm ² at 25 μ W/cm ²		5
Ti ₃ C ₂ MXene	PVA/KOH	1.25 µWh/cm ²	92% (10000	6
			cycles)	
Graphene Film	PVA/H ₂ SO ₄	0.0028 μ Wh/cm ² and 2	98% (10000	7
		μ W/cm ²	cycles)	
PANI-ZIF-67-CC	PVA/H ₃ PO ₄	4.4 μWh/cm ²	80% (2000	8
			cycles)	
MoS ₂ @Ni-	PVA-LiCl	$0.86 \ \mu Wh/cm^2$ at 16	88% (10000	9
mesh//MnO ₂ @Ni-		$\mu W/cm^2$	cycles)	
mesh (Asymmetric)				
Cu@Ni@NiCoS	PVA-KOH	$0.48 \ \mu Wh/cm^2$ at 11.15	92% (10000	10
		μ W/cm ²	cycles)	
CrSe ₂ /Ti ₃ C ₂	PVA/KOH	7.11 μ Wh/cm ² at 355	82% (5000	This

MXene	μW/cm ²	cycles)	Work

Supporting References

- 1 D. Fu, H. Zhou, X. M. Zhang, G. Han, Y. Chang and H. Li, *ChemistrySelect*, 2016, 1, 285–289.
- 2 K. Guo, Y. Ma, H. Li and T. Zhai, *Small*, 2016, **12**, 1024–1033.
- J. Noh, C. M. Yoon, Y. K. Kim and J. Jang, *Carbon N. Y.*, 2017, **116**, 470–478.
- X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu and Z. L. Wang, *Adv. Mater.*, 2016, 28, 98–105.
- 5 A. Ramadoss, K. Y. Yoon, M. J. Kwak, S. I. Kim, S. T. Ryu and J. H. Jang, *J. Power Sources*, 2017, **337**, 159–165.
- S. Xu, Y. Dall'Agnese, G. Wei, C. Zhang, Y. Gogotsi and W. Han, *Nano Energy*,
 2018, 50, 479–488.
- 7 P. Xu, J. Kang, J. B. Choi, J. Suhr, J. Yu, F. Li, J. H. Byun, B. S. Kim and T. W. Chou, ACS Nano, 2014, 8, 9437–9445.
- L. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong, Y. Wang, H. Li, Y. Chen and B. Wang,
 J. Am. Chem. Soc., 2015, 137, 4920–4923.
- B. S. Soram, J. Y. Dai, I. S. Thangjam, N. H. Kim and J. H. Lee, *J. Mater. Chem. A*, 2020, 8, 24040–24052.
- B. S. Soram, I. S. Thangjam, J. Y. Dai, T. Kshetri, N. H. Kim and J. H. Lee, *Chem. Eng. J.*, 2020, **395**, 125019.