Supporting Information

COF in situ growing on CdS nanorods as core-shell heterojunction for improving the charge-separation efficiency

Yanan Feng,^{a, b, c} Jingjun Li, ^{b, c} Shihua Ye, ^{b, c} Shuiying Gao,^{b, c,*} Rong Cao ^{a, b, c d,*}

^a College of Chemistry, Fuzhou University, Fuzhou 350002, China

^b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

^c University of the Chinese Academy of Sciences, Beijing 100049, China

^{*d*} Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China

* Corresponding authors. E-mail addresses: gaosy@fjirsm.ac.cn (S. Gao), rcao@fjirsm.ac.cn (R. Cao).

Part S1

Characterization

Fig. S1 Synthetic process and TEM images of CdS@COF_{A+C}, CdS@COF_{C+D} and CdS@COF_{B+D}, respectively.

Fig. S2 SEM, TEM and FT-IR after hydrogen evolution cycling reaction of CdS@TTI-COF-60

Fig. S3 Photocurrent response of (a)TTI-COF and CdS@TTI-COF-60 (b)pure CdS and physical mixing of CdS and TTI-COF

Part S2

Calculation of apparent quantum yield

The apparent quantum yield (AQY) of CdS@TTI-COF-60 was calculated based on the H₂ production under simulated solar irradiation by a Xe lamp equipped with a 420nm monochromatic optical filter, the ILT 950 spectroradiometer was used to measure the intensity of incident monochromatic illumination . The AQY is calculated by using the following equation

$$AQY = \frac{2MN_Ahc}{AIt\lambda} \times 100\%$$

Where M is molar amounts of H₂ during irradition 1 h (M= 4.25×10^{-6} mol/h), N_A is Avogadro constant (6.022 ×10²³ mol⁻¹). h is Planck constant (6.626× 10⁻³⁴ J·s). c is the light velocity (3×10⁸ m/s). A is the irradiation area (1.6×10⁻³ m²). I is the intensity of irradation light (281.46 W/m²). t is the reaction time (3600 s). λ is the wavelength of the monochromatic light (λ = 420 nm). Finally, AQY=0.15%

Part S3

Carrier density calculation

The carrier density (N_D) is calculated using this formula: ¹⁻³

$$N_{\rm D} = (2/\epsilon\epsilon\epsilon_0)[d(U_{\rm FL})/d(1/C^2)]$$

where $e = 1.6 \times 10^{-19}$ C, $\epsilon_0 = 8.86 \times 10^{-12}$ F m⁻¹, ϵ is the dielectric constant, and C is the

capacitance. The dielectric constants of TTI-COF and CdS are about 3.67 and 6.56, respectively. The slopes of TTI-COF and CdS are 6.4×10^{10} and 3×10^{10} . Therefore, the N_D values of TTI-COF and CdS are about 5.99×10^{18} cm⁻³ and 7.16×10^{18} cm⁻³, respectively.

References

- 1 X. Fang-Xing, S.F. Hung, J.W. Miao, H.Y. Wang, H.B. Yang, B. Liu, *Small*, 2015, **11**, 554-567.
- 2 Z.H. Zhang, P. Wang, *Energy Environ. Sci.*, 2012, **5**, 9948-9948.
- 3 G. Wang, Q. Wang, W. Lu, J.H. Li, J. Phys. Chem. B, 2006, 110, 22029-22034.