Supporting Information

K⁺ intercalated MnO₂ with ultra-long cycling life for highperformance aqueous magnesium-ion hybrid supercapacitors

Liming Xu,^{a#} Guodong Pan,^{a#} Jiachen Wang,^{a*} Jiabao Li,^b Zhiwei Gong,^c Ting Lu,^{a*} Likun Pan^{a*}

^a Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

^b School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China

^b School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

*Corresponding authors

Email: <u>lkpan@phy.ecnu.edu.cn</u> (Likun Pan);<u>jcwang@phy.ecnu.edu.cn</u> (Jiachen Wang); <u>tlu@phy.ecnu.edu.cn</u> (Ting Lu)

[#] Author Contributions: Liming Xu and Guodong Pan contributed equally

Preparation of working electrode

80 wt.% active material, 10 wt.% Super P (conductive agent), and 10 wt.% polyvinylidene fluoride (binder) were mixed together in 1-methyl-2-pyrrolidone to form a homogeneous slurry. Then, the slurry was uniformly casted on graphite substrates (4 cm²). Finally, the working electrode was dried in a blast drying oven at 60 °C for 48 h. The mass loading of active material on the working electrode is about 4 mg.

Electrochemical calculation

For the three-electrode and two-electrode systems, the specific capacitance (C_F , F g⁻¹; C, mAh g⁻¹) was calculated from the GCD curves according to the following equation ^{1,2,3}:

$$C_{F} = \frac{I \times \Delta t}{m \times \Delta V}$$
(1)
$$C = \frac{I \times \Delta t}{3.6 \times m}$$
(2)

where I, ΔV , m and v refer to the current (A), potential window (V), mass of active material (g) and scan rate (V s⁻¹), respectively.

For the two-electrode system, the energy density (E, Wh Kg⁻¹) and power density (P, W Kg⁻¹) were calculated according to the following equations ^{4,5}:

$$E = \frac{C_g \times \Delta V^2}{2 \times 3.6}$$
(3)
$$P = \frac{3600 \times E}{\Delta t}$$
(4)

where C_g , ΔV , and Δt refer to the specific capacitance (F g⁻¹), potential window (V), and scan rate (s), respectively.

Fig. S1. SEM images of (a) K-MnO₂-1, (b) K-MnO₂-3, (c) K-MnO₂-4.

Fig. S2. Energy dispersive X-ray spectrum (EDS) analysis spectrum of K-MnO₂-2.

Fig. S3. CV curves at varied scan rates and GCD curves at different current densities of (a, b) MnO₂, (c, d) K-MnO₂-1, (e, f) K-MnO₂-3, and (g, h) K-MnO₂-4.

Fig. S4. Log(i)-Log(v) curves of K-MnO₂-2.

Fig. S5. (a) CV curve with the capacitive contribution at a scan rate of 10 mV s⁻¹, (b)

the percentages of capacitive and diffusion contributions of MnO₂.

Fig. S6. Equivalent circuit diagram of MnO₂, K-MnO₂-1, K-MnO₂-2, K-MnO₂-3, and K-MnO₂-4.

Fig. S7. SEM image of K-MnO₂-2 electrode before cycling (a) and after cycling (b). XRD patterns of K-MnO₂-2 electrode before and after cycling (c). XPS deconvolution of K 2p (d), Mn 2p (c), and O 1s (d) of the K-MnO₂-2 electrode after cycling.

Fig. S8. (a) CV curves of AC and K-MnO₂-2 at a scan rate of 10 mV s⁻¹, (b) CV curves at 2-20 mV s⁻¹, (c) GCD curve at 0.5-2.0 A g⁻¹, and (d) Nyquist plots of AC (Inset shows the magnified plot in high-frequency region).

References

- 1 L.H. Wang, X.K. Ye, Y.C. Zhu, H.D. Jiang, J.X. Xia, Z.Y. Yue, Z.Q. Wan, C.Y. Jia and X.J. Yao, *Electrochim. Acta*, 2020, **340**, 135804.
- 2 L.M. Xu, D.H. Zhu, W.Q. Zhou, F.X. Jiang, Y.L. Wu, Y. Cai, H. Kang and J.K. Xu,
- J. Energy Storage, 2021, 43, 103303.
- 3 N. Zarshad, A.U. Rahman, J.H. Wu, A. Ali, F. Raziq, L. Han, P. Wang, G.G. Li and H.M. Ni, *Chem. Eng. J.*, 2021, **415**, 128967.
- 4 J.W. Zhang, L.B. Zhu, H.T. Jia, K.X. Wei and L.X. Wen, *J. Alloys Compd.*, 2021, **889**, 161772.
- 5 L.M. Xu, Y.Y. Zhang, W.Q. Zhou, F.X. Jiang, H. Zhang, Q.L. Jiang, Y.H. Jia, R. Wang, A.Q. Liang, J.K. Xu and X.M. Duan, ACS Appl. Mater. Interfaces 2020, 12, 45202-45213.