Supplementary Information to [Size-modified Poisson-Nernst-Planck approach for modeling a local electrode environment in CO₂ electrolysis]

Esaar Naeem Butt, Johan T. Padding, Remco Hartkamp*

Department of Process and Energy, Delft University of Technology, Leeghwaterstraat 39, Delft, 2628 CB, the Netherlands

1. Bulk Concentrations

Henry's law is assumed to be valid for CO_2 gas and Eq. (1) is used to evaluate the bulk concentration of CO_2 in water.

$$\operatorname{CO}_{2aq}^{\ 0} = K_H^0 C_{\operatorname{CO}_{2,q}} \tag{1}$$

Henry's constant K_H^0 is temperature dependent and in the presented system the temperature is taken as 298.15 K. The following equation is used to calculate its value[1]:

$$\ln K_H^0 = 93.4517 \times \frac{100}{T} - 60.2409 + 23.3585 \ln \frac{T}{100}$$
(2)

 CO_2 concentration in an electrolyte will be different than in pure water. The ionic concentration affects the solubility of CO_2 . The saturated concentration of CO_2 in the electrolyte (CO_{2aq}) is then given by:

$$\log\left(\frac{\mathrm{CO}_{2aq}^{0}}{\mathrm{CO}_{2aq}}\right) = K_s C_s \tag{3}$$

here C_s is the concentration of electrolyte and for our work it is 0.5 M KHCO₃. K_s is the Sechenov's constant given by [2]:

$$K_s = \sum_i (h_{\rm CO_2} + h_i) n_i \tag{4}$$

^{*}Corresponding author

Email address: r.m.hartkamp@tudelft.nl (Remco Hartkamp)

where h_i is the Sechenov parameter for ion *i* and is given in Table 1. h_{CO_2} is calculated using:

$$h_{\rm CO_2} = h_{\rm CO_2,0} + h_{\rm CO_2,T}(T - 298.15)$$
(5)

and n_i is defined as:

$$n_i = \frac{c_i}{C_s} \tag{6}$$

Here c_i represents the ionic concentrations before injecting the CO₂ gas and are calculated from the solution of equilibria of Eqs. (1-3) in the main manuscript. The calculated concentration of saturated CO₂ (CO_{2aq}) is then used to determine the bulk concentration of all other solution species post CO₂ saturation using the same equilibrium equation (Eqs.(1-3) in the main manuscript). This balance is given by (7-11). These equations are solved until a steady state is achieved. The bulk concentration values for all solution species for both 5 and 40 bar pressure are given in Table 3. The bulk rate equations are given by:

$$R_{\rm H^+} = k_3 - k_{-3}C_{\rm H^+}C_{\rm OH^-} \tag{7}$$

$$R_{\rm CO_2} = -k_2 C_{\rm CO_2} C_{\rm OH^-} + k_{-2} C_{\rm HCO_3^-} \tag{8}$$

$$R_{\rm CO_3^{2-}} = k_1 C_{\rm HCO_3^{-}} C_{\rm OH^{-}} - k_{-1} C_{\rm CO_3^{2-}}$$
(9)

$$R_{\rm HCO_3^{-}} = -k_1 C_{\rm HCO_3^{-}} C_{\rm OH^{-}} k_{-1} C_{\rm CO_3^{2-}} + k_2 C_{\rm CO_2} C_{\rm OH^{-}} - k_{-2} C_{\rm HCO_3^{-}}$$
(10)

$$R_{\rm OH^-} = k_3 - k_{-3}C_{\rm H^+}C_{\rm OH^-} - k_2C_{\rm CO_2}C_{\rm OH^-} + k_{-2}C_{\rm HCO_3^-} - k_1C_{\rm HCO_3^-}C_{\rm OH^-} + k_{-1}C_{\rm CO_3^{2-}}$$
(11)

2. Supplementary Results

Figure 1: Concentration profile of HCO_3^- and CO_3^{2-} near the surface of the electrode at varied applied electrode potentials for a 0.5M KHCO₃ solution at 5 bar CO₂ pressure.

Figure 2: Comparison of concentration profiles of different species using FBV-SMPNP and GMPNP approach for 0.5M KHCO₃ solution at -1.3 VS SHE/V in a 5 bar CO_2 electrolyzer.

Figure 3: Comparison of electric potential near the electrode surface using FBV-SMPNP and GMPNP approach for a 0.5M KHCO₃ solution at applied electrode potential of -1.3 VS SHE/V in a 5 bar CO₂ electrolyzer. The potential profiles become steady after some distance from OHP. This is the point beyond which potential is 0 vs PZC/V (bulk boundary condition).

Figure 4: Comparison of pH near the electrode surface using FBV-SMPNP and PNP approach for a 0.5M KHCO₃ solution at an applied electrode potential of -1.3 VS SHE/V in a 5 bar CO₂ electrolyzer.

3. Parametric Data

Table 1:	Sechenov Parameters ($m^3 kmol^{-1}$). [2]

Species(i)	h_i
$\mathrm{CO_3}^{2-}$	0.1423
OH^-	0.0839
HCO_{3}^{-}	0.0967
K^+	0.0922
$CO_2,0$	-0.0172
$\rm CO_2, T$	-0.000338

Table 2: Rate Constants.[3, 4]

Constant	Value	Unit
k_1	6.0×10^6	$\mathrm{mol}^{-1}\mathrm{m}^{3}\mathrm{s}^{-1}$
k_{-1}	$1.07 imes 10^6$	s^{-1}
k_2	2.23	$\mathrm{mol}^{-1}\mathrm{m}^{3}\mathrm{s}^{-1}$
k_{-2}	5.23×10^{-5}	s^{-1}
k_3	2.4×10^{-2}	$\mathrm{molm}^{-3}\mathrm{s}^{-1}$
k_{-3}	$2.4 imes 10^6$	$\mathrm{mol}^{-1}\mathrm{m}^{3}\mathrm{s}^{-1}$

Species	$C_i(5\mathrm{bar})(\mathrm{pH}=6.9)$	$C_i(40\mathrm{bar})(\mathrm{pH}=6.1)$
$\mathrm{CO_3}^{2-}$	0.23×10^{-3}	0.28×10^{-4}
OH^-	0.82×10^{-7}	0.10×10^{-7}
HCO_{3}^{-}	0.49	0.49
K^+	0.50	0.50
H^+	0.12×10^{-6}	$0.97 imes 10^{-6}$
$\rm CO_2$	0.17	1.36

Table 3: Bulk Concentrations at 5 and 40 bar CO_2 pressure (mol dm⁻³).

Table 4: Diffusivities $(m^2s^{-1}).[5, 6]$

Species	Value
CO_3^{2-}	0.92×10^{-9}
OH^-	$5.23 imes 10^{-9}$
HCO_{3}^{-}	1.18×10^{-9}
\mathbf{K}^+	1.95×10^{-9}
$\rm CO_2$	1.91×10^{-9}
H^+	9.31×10^{-9}

Table 5: Species Sizes (m).[7]

Species	Value
$\overline{\begin{array}{c}a_{\mathrm{CO_3}^{2-}}\\a_{\mathrm{OH}^{-}}\\a_{\mathrm{HCO_3}^{-}}\\a_{\mathrm{K}^{+}}\\a_{\mathrm{CO_2}}\\a_{\mathrm{H}^{+}}\\a_{\mathrm{H_2O}}\end{array}}$	$\begin{array}{c} 0.788 \times 10^{-9} \\ 0.60 \times 10^{-9} \\ 0.80 \times 10^{-9} \\ 0.66 \times 10^{-9} \\ 0.33 \times 10^{-9} \\ 0.56 \times 10^{-9} \\ 0.30 \times 10^{-9} \end{array}$

Table 6: Equilibrium Potential (V vs SHE).[8]

Reaction	Value
$\overline{CO_2(aq) + H_2O + 2e^-} \rightleftharpoons HCOO^- + OH^-$ $CO_2(aq) + H_2O + 2e^- \rightleftharpoons CO(g) + 2OH^-$ $2H_2O + 2e^- \rightleftharpoons H_2(g) + 2OH^-$	-0.43 -0.53 -0.41

References

- L. Hansson, V. J. Fabry, J.-P. Gattuso, U. Riebesell, Guide to best practices for ocean acidification research and data reporting (2010). doi:10.2777/58454.
- S. Weisenberger, A. Schumpe, Estimation of gas solubilities in salt solutions at temperatures from 273 k to 363 k, AIChE Journal 42 (1996) 298-300, doi: 10.1002/aic.690420130. doi:10.1002/aic.690420130. URL https://doi.org/10.1002/aic.690420130
- [3] K. G. Schulz, U. Riebesell, B. Rost, S. Thoms, R. E. Zeebe, Determination of the rate constants for the carbon dioxide to bicarbonate inter-conversion in phbuffered seawater systems, Marine Chemistry 100 (2006) 53-65. doi:10.1016/ j.marchem.2005.11.001.
- [4] P. Atkins, J. de Paula, J. Keeler, Atkins' Physical Chemistry 11e, 11th Edition, Vol. 2, Oxford University Press, 2018.
- [5] J. Rumble, Handbook of Chemistry and Physics, 100th Edition, CRC Press, 2019.
- [6] B. Jähne, G. Heinz, W. Dietrich, Measurement of the diffusion coefficients of sparingly soluble gases in water, Journal of Geophysical Research 92 (1987) 10767. doi:10.1029/JC092iC10p10767.
- [7] E. Nightingale, Phenomenological theory of ion solvation. effective radii of hydrated ions, The Journal of Physical Chemistry (1959). doi:10.1021/ j150579a011.
- [8] J. Qiao, Y. Liu, J. Zhang, Electrochemical Reduction of Carbon Dioxide, 1st Edition, CRC Press, 2016.