Creating electron-rich region on ultrafine Bi₂O₃ nanoparticles to boost

the electrochemical carbon dioxide reduction to formate

Jiayu Zhan,^a Lu-Hua Zhang,^{*a} Xueli Wang,^a Yuqi Hu,^a Yi Jiang,^{*b} and Fengshou Yu^{*a}

Figure S1. Linear relationship between the formate concentration and peak area

Figure S2. Solid EPR spectra of NV-C₃N₄ and C₃N₄

The paramagnetic absorption signal at g=2.0042 corresponds to the unpaired electrons captured by the NVs.

Figure S3. (a) N 1s spectra of NV-C₃N₄ and C₃N₄; (b) C 1s spectra of NV-C₃N₄ and C₃N₄

Figure S4. (a) XRD patterns and (b) N_2 adsorption isotherms for NV-C₃N₄ and C₃N₄.

Figure S5. element mapping of Bi₂O₃/NV-C₃N₄.

Figure S6. TEM images (a-b) and element mapping (c) of Bi_2O_3/C_3N_4

Figure S7. (a) Secondary electron cut-off energy ($E_{cut-off}$) for $Bi_2O_3/NV-C_3N_4$ and Bi_2O_3/C_3N_4 catalysts; (b) Onset(E_i) energy regions of $Bi_2O_3/NV-C_3N_4$ and Bi_2O_3/C_3N_4 samples. The work function calculated as the following equation, $\Phi = 21.22 \text{ eV} - (E_{cut-off} - E_i)$, is 6.67 eV and 6.86 eV for $Bi_2O_3/NV-C_3N_4$ and Bi_2O_3/C_3N_4 samples

Figure S8. The DFT calculations of the electronic structure of (a) Bi_2O_3/C_3N_4 and (b) $Bi_2O_3/NV-C_3N_4$ with corresponding charge distribution of VBM (valence band maximum) and CBM (conduction band minimum).

Figure S9. Partial current density of formate.

Figure S10. Bi_2O_3 , Bi_2O_3/C_3N_4 and $Bi_2O_3/NV-C_3N_4$ (a) FE of H₂; (b) FE of CO.

Figure S11. ¹H-NMR spectra of the liquid products from the CO₂RR

Figure S12. Cyclic voltammograms at the range of -0.10 to 0.10 V vs. RHE with different scan rates (60, 80, 100, 120 and 140 mV s⁻¹) (a) Bi_2O_3 ; (b) Bi_2O_3/C_3N_4 ; (c) $Bi_2O_3/NV-C_3N_4$; (d) Charging current density differences plotted against scan rates.

Figure S14. Optimized geometric structure models of three intermediate $*CO_2$, *OCHO and *HCOOH adsorbed on (a) Bi_2O_3/C_3N_4 , (b) $Bi_2O_3/NV-C_3N_4$ surfaces; the purple, gray, red, and white spheres represent Bi, C, O, and H atoms, respectively; Especially, the yellow spheres in $Bi_2O_3/NV-C_3N_4$ represent the removed N atoms.

		-	-	
Samples	Bi 4f	O 1s	C 1s	N 1s
	at %	at %	at %	at %
C_3N_4			42.62	57.38
NV-C ₃ N ₄			44.90	55.10
Bi ₂ O ₃	18.79	52.47	28.74	
Bi ₂ O ₃ /C ₃ N ₄	17.03	44.22	25.92	12.83
Bi ₂ O ₃ /NV-C ₃ N ₄	13.22	34.46	30.84	21.49

Table S1. Atomic percentage of different samples

 Table S2.
 Electrochemical CO₂ reduction performance of different Bi-based catalysts.

Catalysts	Maximum	Potential range of	Ctobility times (b)	Reference
	FE _{Formate} (%)	FE _{Formate} >80%	Stability time (II)	
Bi ₂ O ₃ /NV-C ₃ N ₄	95	700	24	This work
Bi/rGO	98	400	12	[1]
Bi@NPC	92	400	24	[2]
Bi (PC-6c)	100	400	10	[3]

Bi(B)-2	95	600	12	[4]
Bi nanosheets	86	200	10	[5]
Bi nanotubes	97	600	10	[6]
Bi-001	95.9	200	16	[7]
Bi NP@MWCNTs	95.2	100	10	[8]

References

- [1] Y. X. Duan, K. H. Liu, Q. Zhang, J. M. Yan, Q. Jiang, Small Methods 2020, 4.
- [2] D. Zhang, Z. Tao, F. Feng, B. He, W. Zhou, J. Sun, J. Xu, Q. Wang, L. Zhao, *Electrochim. Acta* 2020, 334.
- [3] S. Kim, W. J. Dong, S. Gim, W. Sohn, J. Y. Park, C. J. Yoo, H. W. Jang, J.-L. Lee, Nano Energy 2017, 39, 44-52.
- [4] X. Chen, H. Chen, W. Zhou, Q. Zhang, Z. Yang, Z. Li, F. Yang, D. Wang, J. Ye, L. Liu, Small 2021, 17, e2101128.
- [5] W. Zhang, Y. Hu, L. Ma, G. Zhu, P. Zhao, X. Xue, R. Chen, S. Yang, J. Ma, J. Liu, Z. Jin, *Nano Energy* **2018**, *53*, 808-816.
- [6] K. Fan, Y. Jia, Y. Ji, P. Kuang, B. Zhu, X. Liu, J. Yu, ACS Catal. **2019**, *10*, 358-364.
- [7] D. Wu, J. Liu, Y. Liang, K. Xiang, X. Z. Fu, J. L. Luo, *ChemSusChem* **2019**, *12*, 4700-4707.
- [8] X. Zhang, J. Fu, Y. Liu, X.-D. Zhou, J. Qiao, ACS Sustainable Chem. Eng. 2020, 8, 4871-4876.