Transient HCO/HCOO⁻ species formation during Fischer-Tropsch over Fe-Co spinel using low Ribblet ratio syngas: A combined operando IR and kinetic study

Shashank Bahri, Shailesh Pathak, Sreedevi Upadhyayula*

Heterogeneous Catalysis and Reaction Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India

*E-mail address: sreedevi@chemical.iitd.ac.in

Supporting Information

Table S1 Parameters for external mass transfer limitations.

Parameter	Value	Unit
Reaction rate of disappearance of A(-r _A)	2.01×10 ⁻²	mol kg _{cat} ⁻¹ s ⁻¹
Order of reaction (n)	1	
Mass transfer coefficient (k _C)	4.29×10 ⁻²	m s ⁻¹
Bulk concentration (C _{AB})	112.74	mol m ⁻³
Bulk density of catalyst bed (ρ_b)	546.2	kg _{cat} m ⁻³
Particle radius (R _p)	0.42×10 ⁻³	m
Mears' Criterion (C _M)	0.9533×10 ⁻⁷	

Table S2 Parameters for internal mass transfer limitations.

Parameter	Value	Unit
Concentration of component A at the surface $(C_{A,i})$	112.74	mol m ⁻³
Specific surface area (a _c)	7.14×10^{3}	$m_{p}^{2} m_{p}^{-3}$
Effective diffusivity (D _e)	1.14×10 ⁻⁶	$m^2 s^{-1}$
Weisz-Prater Criterion (φ)	5.2×10 ⁻³	

-	-						
S.No.	Temp	$SV \times 10^{-2}$	P _{H2}	P _{co}	co.	$r_{FT}^{exp} imes 10^{-3}$	$r_{syngas}^{exp} imes 10^{-3}$
	(K)	(molkg ⁻¹ sec ⁻ 1)	(bar)	(bar)	conversion (%)	(molkg ⁻¹ sec ⁻¹)	(molkg ⁻¹ sec ⁻¹)
1	483	2.04	6.04	4.82	16.90	1.00	4.09
2	483	2.27	5.81	4.70	18.97	1.33	5.08
3	483	2.49	5.72	4.53	21.90	1.61	5.86
4	483	2.72	5.70	4.48	22.76	1.80	7.08
5	483	2.95	5.74	4.50	22.41	2.73	7.76
6	493	2.04	4.93	4.02	30.69	1.81	6.17
7	493	2.27	4.81	3.96	31.72	2.31	7.16
8	493	2.49	4.72	3.88	33.10	2.03	7.69
9	493	2.72	4.69	3.90	32.76	2.59	8.85
10	493	2.95	4.75	4.04	30.34	2.65	9.36
11	503	2.04	4.20	3.45	40.52	1.65	6.76
12	503	2.27	4.09	3.42	41.03	2.18	8.02
13	503	2.49	4.02	3.38	41.72	3.01	8.55
14	503	2.72	4.06	3.46	40.34	3.18	10.27
15	503	2.95	4.15	3.65	37.07	3.22	10.84
16	513	2.04	3.76	3.01	48.10	2.01	6.59
17	513	2.27	3.67	3.07	47.07	2.46	7.90
18	513	2.49	3.68	3.08	46.90	3.02	9.27
19	513	2.72	3.70	3.20	44.83	3.55	10.71
20	513	2.95	3.82	3.41	41.21	3.86	12.19

 Table S3Experimental CO consumption rate at different reaction conditions.

Figure S 1 Arrhenius plot of rate constants (k) of (a) FT-III3, (b) FT-III4 and (c) FT-IV5.

Figure S 2 Van't Hoff plot of adsorption coefficient of (A) of CO molecule and (B) of H₂ molecule based on the (a) FT-III3, (b) FT-III4 and (c) FT-IV-5 models.

Model	Active metal	Rate Expression	MAPD	Ref.
M1	Со	$r_{FT} = k P_{H_2}^2 P_{CO}$	37.8	(Brötz, 1949)
M2	Fe	$r_{FT} = \frac{kP_{H_2}P_{CO}}{bP_{H_2O} + P_{CO}}$	16.6	(Anderson et al., 1964)
М3	Fe	$-r_{FT} = \frac{a P_{H_2}^2 P_{CO}}{1 + b P_{H_2}^2 P_{CO}}$	15.9	(Anderson et al., 1964)
M4	Fe	$r_{FT} = \frac{kP_{H_2}P_{CO}}{bP_{H_2O} + P_{H_2} + P_{CO}}$	18.5	(Huff and Satterfield, 1984)
M5	Со	$r_{FT} = \frac{a P_{H_2}^{0.5} P_{CO}^{0.5}}{(1 + b P_{H_2}^{0.5} + c P_{CO})^2}$	15.1	(Sarup and Wojciechows ki, 1989)
M6	Со	$r_{FT} = \frac{a P_{H_2}^{0.5} P_{CO}}{(1 + b P_{CO})^2}$	17.3	(Yates and Satterfield, 1991)
M7	Со	$r_{FT} = \frac{a P_{H2} P_{CO}}{(1 + c P_{CO})^2}$	15.9	(Yates and Satterfield, 1991)
M8	Со	$r_{FT} = \frac{k P_{H_2}^{0.5} P_{CO}}{b P_{H_2O} + P_{CO}}$	17.8	(van Berge, 1994)
M9	Fe	$r_{FT} = \frac{k P_{CO} P_{H_2}^{0.5}}{(1 + a P_{CO} + b P_{H_2O})^2}$	15.2	(Van Der Laan and Beenackers, 2000)
M10	Со	$r_{\rm FT} = \frac{a P_{\rm H_2}^{0.74} P_{\rm CO}}{(1 + b P_{\rm CO})^2}$	18.6	(Zennaro et al., 2000)
M11	Fe	$r_{\rm FT} = \frac{a P_{\rm H_2}^{0.75} P_{\rm CO}^{0.5}}{(1 + b P_{\rm CO}^{0.5})^2}$	15.9	(Botes and Breman, 2006)
M12	Co	$r_{FT} = \frac{a P_{H_2}^{0.5} P_{CO}}{(1 + b P_{H_2}^{0.5} + a P_{CO})^2}$	16.2	(Bhatelia et al., 2011)
M13	Со	$r_{FT} = \frac{kP_{CO}P_{H2}}{(1 + bP_{CO_2} + aP_{CO}^{0.5})^2}$	44.58	(Fazlollahi et al., 2012)
M14	Fe, Co	$r_{FT} = \frac{a P_{H_2}^{0.75} P_{CO}}{(1 + a P_{CO})^2}$	15.82	(Mousavi et al., 2015)
M15	Fe-Co	$r_{FT} = \frac{a P_{H_2}^{0.5} P_{CO}}{(1 + b P_{H_2}^{0.5} + a P_{CO})^2}$	16.2	(Arsalanfar et al., 2017)

Table S 4 MAPD values for literature reported iron and cobalt catalyst