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Section 1. Experimental Section
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Scheme 1. Route for the synthesis of CP

o HOOC COOH
L Q&
HO K;CO4 ) O @,COOH

Preparation of CP: In a round-bottom flask equipped with a condenser for refluxing and a
magnetic stirring bar, methyl 4-hydroxybenzoate (5.78 g, 37.99 mmol), phosphonitrilic
chloride trimer (2.00 g, 5.75mmol), potassium carbonate (5.25 g, 37.99 mmol) and dry
acetone (100 mL) were added. The mixture was stirred under reflux under argon atmosphere
for 24 h, and then cooled to room temperature. After the solvent was removed by rotation
evaporation, water (100 mL) and dichloromethane (200 mL) were added. The organic phase
was separated and the aqueous phase was extracted with dichloromethane. The organic phase
was combined, washed with brine, dried over anhydrous MgSQ,, and filtered. After removal
of the volatile solvent, the residue was purified by silica gel column chromatography
(100~200 mesh) using petroleum ether and ethyl acetate (3:1, v/v) as eluents to afford the
hexamethyl intermediate as a pure white solid in 92% yield

To the hexamethyl intermediate (5.50 g, 5.28 mmol) in methanol (25 mL) and THF (25 mL)
was added NaOH aqueous solution (4 M, 25 mL). The mixture was stirred under an argon
atmosphere at room temperature for 48 h. After the solvent was evaporated, the residue was
dissolved in water and acidified with concentrated HCI in an ice-water bath (pH=1~2). The
resulting precipitate was collected by suction, washed with water twice, and dried at 70 °C
under vacuum, affording the target compound as an off-white solid in 97% yield (4.89 g, 5.11
mmol).
Preparation of CPP-X: First, the polypyrrole-based hydrogel (PPH) was synthesized using a
template-free gelation process through thepolymerization of pyrrole monomers in the
presence of CP and FeCl;. Typically, 400 pL pyrrole monomer was added into 3 mL CP

solution (0.5 mM in ethanol/water, v/v=1:1). 2.24 g of FeCl; was dissolved into another 3 mL



CP solution (0.5 mM in ethanol/water, v/v=1:1). After cooling down to about 4 °C, both
solutions were mixed together quickly, then aged for 24 h. During polymerization, a
crosslinked polymer framework was formed through electrostatic interaction and/or hydrogen
bonding between the positively charged groups containing PPH chains and CP, as well as
through the chelation effect of iron ions on PPH chains. Thus, a stable black gel was obtained.
The obtained PPH was purified with deionized (DI) water and freeze-dried, and then
pyrolyzed in argon atmosphere at a heating rate of 5 °C min™! at different temperatures (800,
900, 1000 °C) for 2 hours. The obtained samples were named CPP-800, CPP-900 and CPP-

1000, respectively.
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Scheme 2. Route for the synthesis of Ferrocene derived single-atom catalysts.

Preparation of PF-X: PF-800 was prepared according to our previous work. Briefly, 4.2 mL
pyrrole was initially dissolved in 50 mL isopropanol. Then, 1,1'-Ferrocenedicarboxylic acid
(1.053 g, 1.1 mmol), NaOH (0.27 g, 6.75 mmol) and ammonium persulfate (13.7 g, 61 mmol)
that pre-dissolved in 100 mL H,0O were quickly mixed with pyrrole at the temperature of 4 °C
to give the FP hydrogel. The hydrogel was washed by ethanol and water thoroughly, and then
subjected to freeze-drying to afford the PF-xerogels. PF-X was prepared via direct
carbonization of PF-xreogel directly under the Ar. After finely grinding, PF-xreogel was
loaded on a porcelain boat and then transferred into a tube furnace. Then, the pyrolysis was

conducted under the atmosphere of Ar and heated to the target temperature (X =700, 800 and



900 °C) for 2 h. The target product, namely PF-X, is obtained after natural cooling to room

temperature.

Preparation of BSMP-800
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Scheme 3. Route for the synthesis of bisalphen derived single-atom catalyst.

The bisalphen (N,N’,N’’,N’’’-tetrabis-(salicylidene)-3,30,4,40-biphenylenetetraimino) ligand
was prepared as previously described in the literature. The bisalphen ligand (1.58 mmol) was
dissolved in ethanol (50 mL) and slowly added dropwise over a suspension of MoO,(acac),.
The mixture was stirred under nitrogen atmosphere at 80 °C for 24 hours. The solution was
refluxed for 36 hours, and the red precipitate was filtered and recrystallized from methanol.
The obtained product was stored under vacuum at room temperature. BSMP hydrogel was
prepared under the same procedure as the FP-gel. And the final catalysts was obtained via

direct carbonization of BSMP at 800 °C.

Materials Characterization: The morphologies of powder samples were evaluated by the
scan electron microscopy (SEM, Caisi Sigma 300) and the transmission electron microscopy

(TEM, JEOL JEM2100PLUS) via dipping the prepared samples on a Cu-net, X-ray



Photoelectron Spectroscopy (XPS) was conducted on XPSESCALAB 250Xi analyser. X-ray
diffraction (XRD) parameters were obtained using a Rigaku Ultima IV diffractometer at a rate
of 5° min! from 5° to 80°. The Brunauer-Emmett-Teller (BET) method was utilized to
calculate the specific surface area. The adsorption and desorption measurements for N, were
performed on ASAP2460 (Micromeritics) at low temperature of 77 K. Raman spectra were
collected on a LabRAM HR Evolution (HORIBA) using a laser with an excitation wavelength
of 532 nm. Fourier Transform Infrared Spectroscopy (FTIR) was performed on KBr pellets in
the range from 4000 to 400 cm! using Thermo Nicolet iS5. Thermo-gravimetric analysis
(TGA) were recorded using NETZSCH STA 449C analyzer from 25 to 900 °C at a heating
rate of 10 °C min-' under the protection of N,.

Electrochemical Measurements!'-%l: The electrochemical measurements were carried out
using RRDE-3A electrochemical workstation in a general three-electrode system, in which
Ag/AgCl (saturated KCl) regarded as the reference electrode, platinum wire (Pt-wire) as the
counter electrode, rotating disk electrode (RDE) coated with catalyst as the working electrode,
and 0.1 M KOH as the electrolyte. Before each measurement, the solution was purged with
high purity Ar or O, gas for at least 30 minutes to ensure the gas saturation. The catalyst ink
was prepared by dispersing 5 mg of catalyst powder with the mixed solvent of water-ethanol-
Nafion (v/v/v=2/15/1) by sonication for 30 minutes. The reference Pt/C (20%) cathode was
prepared by same method. All the potentials in this work were converted to the reversible
hydrogen electrode (RHE) according to the Nernst equation
(Erur=Eagaect0.059xpH+0.197). For oxygen reduction reaction (ORR), the cyclic
voltammetry (CV) tests were performed over voltages ranging from 0.2 to -0.8V (vs.
Ag/AgCl) at a scan rate of 50 mV s*! using Ar or O,-saturated 0.1 M KOH electrolyte. For
oxygen evolution reaction (OER), CV tests was obtained in the O,-saturated 1 M KOH
electrolyte at the potential from 0.9 to 0.3 V (vs. Ag/AgCl) at a scan rate of 10 mV s, In
ORR polarization measurement, linear sweep voltammetry (LSV) using RRDE or RDE were
conducted with the electrode rotated from 400 to 2500 rpm, and contrast with the current in
Ar-saturated 0.1 M KOH electrolyte. The electron transfer number (n) was calculated
according to the Koutecky-Levich Equation:!”]
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Where J is the current density, J; is the current that was measured; Jx represents the kinetic-

limiting current and o is the rotation speeds of electrode.

2/37,-1/6
B=0.62nFC,(D)*V )

In equation S2B1, n is the total number of transferred electrons during the oxygen reduction

process; F is Faradaic constant (F = 96485 C mol!), C, is the O, concentration (solubility) in

0.1 M KOH electrolyte (1.2x10 mol cm ); D, is the O, diffusion coefficient (1.90x10-

cm? s71), and V is the kinematic viscosity of the O, saturated 0.1 M KOH solution (0.01 cm? s
n.

The LSV for OER were performed from 0.9 to 0.3 V at 1600 rpm in Ar-saturated
electrolyte and calibrated by an average of forward and backward currents. To study the
catalysts/electrolyte interface, the electrochemical impedance spectroscopy (EIS) was
performed in the frequency of 0.01-100 kHz with an AC voltage with SmV amplitude. The
methanol crossover measurements were also recorded by chronoamperometry (i-t) at the half-
potential with a rotation speed of 1600 rpm with the addition of 10 mL methanol into 0.1 M
KOH electrolyte at around 400 s. The rotating ring disk electrode (RRDE) measurements
were performed to calculate the yield of H,O, (%) and the electron transfer number (n) based

on the equations as follows:

H20:(%) = ZOOﬂ (S3)
Ip+Ir/N
B Ip
Ip+Ir/N (S4)

In equation S3 and S4, I is the ring current, /5 is the disk current, and the collection efficiency of
the Pt ring (N=0.4581).[%-10]
Zn-air battery

Zn-air battery performance was tested using a home-made liquid Zn-air battery.[!!-13] The air-
cathodes for primary Zn-air battery were prepared by coating the catalysts (1.5 mg cm?) on a
hydrophobic carbon paper, while the polished Zn plate was used as the anode, evaluated in 6 M
KOH electrolyte containing 0.2 M Zn(OAc),. Cycling test was performed using recurrent

galvanostatic pulses for 10 min of discharge followed by 10 min of charge at 10 mA ¢cm? (LAND



CT2001A Model Battery Test System, LANHE Company, Wuhan). The energy density was
calculated according to the followed Equation S5: [14]
P=I*V (S5)
Where I represents the discharge current density and V refers to the corresponding voltage. The
polarization curves of charge and discharge were performed by the LSV method at a scan rate of
10 mV s!. The specific capacity was determined using the galvanostatic discharge plot and

calculated as Equation S6:[13]

. . _l
Specific capacity(mAh g") = Spec.lﬁc capacity(mAh g ) (S6)
Weight of consumed Zn

All battery tests were carried out on LAND CT 2001A multichannel battery testers at room

temperature in oxygen atmosphere. All the potentials throughout this paper were referred to the

potential of the Zn/Zn?* standard couple.

Section 2. TGA and XRD
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Figure S1. a) TG of CPP; b) XRD of PF-X series catalysts; ¢) XRD of BSMP-800.

Section 3. X-ray Photoelectron Spectra (XPS)
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Figure S2. a) High-resolution C 1s XPS spectra of CPP-800; b) High-resolution N 1s XPS spectra of

CPP-800; c¢) High-resolution O 1s XPS spectra of CPP-800; d) High-resolution Fe 2p XPS spectra of

CPP-800; e) High-resolution C 1s XPS spectra of CPP-1000; f) High-resolution N 1s XPS spectra of

CPP-1000; g) High-resolution O 1s XPS spectra of CPP-1000; h) High-resolution Fe 2p XPS spectra of

CPP-1000.

Section 4. EDS

Figure S3. EDS of PM-900.

Section 5. Electrochemical Performance
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Figure S4. CV curves of CPP-900, CPP-800, CPP-1000 and Pt/C in oxygen saturated 0.1 M KOH.
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Figure S5. I, and Igg of CPP-900 in 0.1M KOH
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Figure S6. LSV curve of Pt/C recorded before and after the i-t test.
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Figure S7. LSV curve of CPP-900 recorded before and after the injection of CH3;0H in 0.1 M
KOH.
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Figure S8. LSV curve of Pt/C recorded before and after the injection of CH3;0H in 0.1 M KOH.
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Figure S10. a) LSV polarization curves on OER of CPP-900 recorded 1 M KOH at 1600 rpm; b)
Tafel plots of CPP-900 and commercial IrO,.
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Section 6. Supporting Tables

Table S1. The surface element contents of CPP-X catalysts calculated by the XPS spectra.

Sample C (at%) O (at%) N (at%) Fe (at%) P (at%)
CPP-800 82.35 11.96 4.78 0.53 0.37
CPP-900 82.45 11.13 5.43 0.41 0.59

CPP-1000 88.53 8.84 2.17 0.52 0.3

Table S2. Porosity Parameters of prepared polymers and corresponding catalysts

Sample BET (m?%/g) Vtotal (cm3/g) Average Pore size(nm)
CPP 57.73 0.1963 3.54
CPP-800 403.1 0.417 2.77
CPP-900 1002.6 0.837 1.31
CPP-1000 319.7 0.382 2.87

Table S3. The comparison of the electrochemical performance toward ORR among other

recently reported electrocatalysts in 0.1 M KOH.

Sample Onset Half-wave Current density Ref.
potential potential (mA cm2;at 0.5 V)
(Eonsets V) (E1p2,V)
CPP-900 0.986 0.848 5.24 This work
NCF-900 1.05 0.89 8.66 [16]
Ni-NC700 0.86 0.75 2.05 [17]
CP-CMP-900 0.997 0.85 4.78 [18]
a-Fe,0;/Fe@NPC 1.01 0.88 5.06 [19]
FeN@FCS-900 0.93 0.78 4.99 [20]
PBSCF 0.7 0.5 2.5 [21]

cal-FeZIF-NSC-0.2 0.97 0.78 5.07 [22]




Table S4. The comparison of the electrochemical performance toward ORR among other

recently reported electrocatalysts in 0.1 M HCIO,.

Sample Onset Half-wave Current density Ref.
potential potential (mA cm2;at 0.5 V)
(Eonsets V) (E1,V)
CPP-900 0.792 0.62 591 This work
N-FeGly/C 0.8 0.63 44 [23]
[Fe(NCs)]_950 0.8 0.7 4.75 [24]
Fe-N-C@MXene 0.832 0.777 5.7 [25]
(Fe,Co)/N-C 1.06 0.863 5.69 [26]
Fe2P/FeP-PNC 0.92 0.7 5.31 [27]
Co-Fe SAs/NC 0.86 0.75 6.25 [28]
Co/C0304@C 0.782 0.672 5.32 [29]
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