Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2022

Supporting Information

CuBi₂O₄ Nanocrystals Integrated with the Polyaniline Nanobelt Arrays for Weak

Light Photomultiplication Type Photodetector

Anshika Singh^a, Pratima Chauhan^a, Arpit Verma^b, Bal Chandra Yadav^b

^aAdvanced Nanomaterials Research Laboratory, U.G.C. Centre of Advanced Studies,

Department of Physics, University of Allahabad, Prayagraj-211002, India

^bNanomaterials and Sensors Research Laboratory, Babasaheb Bhimrao Ambedkar

University, Lucknow-226025, U.P., India

Email-id: anshikasingh@allduniv.ac.in; mangu167@yahoo.co.in

1. Surface Morphological Analysis

Surface morphology of the $CuBi_2O_4NCs$ investigated by the scanning electron micrographs (SEM) and in Fig. S1 (a and b) shows nanopellets like structures at 2 μ m. Fig. S1 (c and d) shows symmetric and almost the same size as the pellets as clearly shown in the micrographs at 1 μ m and 0.5 μ m respectively.

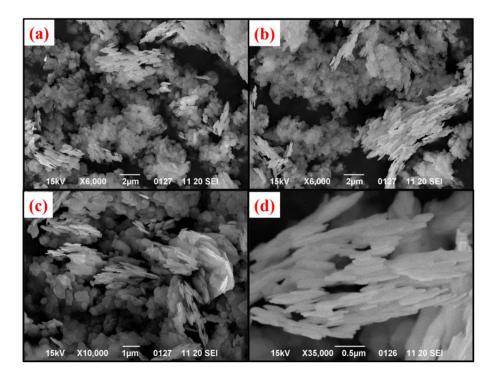


Fig. S1 SEM images at (a) $2 \mu m$ (b) $2 \mu m$ (c) $1 \mu m$ (d) $0.5 \mu m$.

2. X-ray Diffraction

In the XRD pattern of CuBi₂O₄ the characteristics peaks are (200), (211), (220), (002), (102), (310), (112), (311), (202), (400), (222), (312), (411), (420), (213), (402), (332), (502), (442), and (612) found, which corresponds to the 2 θ angles of 21.051°, 26.597°, 28.143°, 31.015°, 32.070°, 32.782°, 35.359°, 36.390°, 38.648°, 42.697°, 43.164°, 45.888°, 46.477°, 48.440°, 52.195°, 53.766°, 55.852°, 63.240°, 71.020°, and 74.848°. The average crystallite size was calculated by the Scherrer formula as in relation (S1) and found to be 37.37 nm.

$$D = \frac{k\lambda}{\beta\cos\theta}$$
(S1)

Where k is the Scherrer constant, λ is the Cu K_a wavelength (0.15406 nm), β is the full width and half maxima and θ is the Braggs angle.

3. Characterization Tools

The structural study is carried out using a Bruker D8 Advance Eco X-ray diffractometer, and the surface morphological examinations are carried out using a JEOL JSM 6490 LV Scanning Electron Microscope (SEM). Thermo- Scientific's Nicole 6700 spectrometer performs Fourier transform infrared spectroscopy. We utilize a Thermo-Scientific Evolution 201 spectrophotometer for UV-Visible spectroscopy. Malvern Nanozetasizer, Model: NZS90, UK, is used to measure particle size. The photodetector device was examined using a Keithley source meter (6517 B), a source of wavelength 365 nm and Newport optical meter.

4. Device Fabrication

For the fabrication of the photodetector device, the following processes were followed in order. The first procedure involved cutting cotton substrates into 1×1 cm² and dissolving the 0.2 g of CuBi₂O₄-polyaniline in 1.5 mL of N-Methyl-2-pyrrolidone (NMP) in an ultrasonic bath for 50 minutes. This cotton substrate was dipped into the solution and dried in a 30°C oven for 30 min. This process was repeated three times to form a dense film of CuBi₂O₄-polyaniline on cotton fabrics. In the last phase, silver electrodes with a channel width of 2 mm and a length of 3 mm were painted on the substrates.

5. Results and Discussion

All the parameters of the $CuBi_2O_4$ -polyaniline photodetector device at the illumination intensity of 50 μ W/cm² with varying potential drift as tabulated in Table S1. On the other hand, figures of merit of the $CuBi_2O_4$ -polyaniline photodetector device for different illumination intensities at the potential drift of 1 V.

Qualitative parameters for our CuBi₂O₄-polyaniline photodetector device

Responsivity	LDR	EQE	Detectivity	NEP	Gain	Volt
(A/W)	(dB)	(%)	(Jones)	(W)		age
						(V)
32.77	17.56	1.11×10 ⁴	3.66×10 ¹²	3.05×10-7	7.39×10 ¹⁰	50
16.26	12.57	5.51×10 ³	1.82×10 ¹²	6.15×10 ⁻⁷	3.66×10 ¹⁰	25
10.93	10.06	3.70×10 ³	1.22×10 ¹²	9.15×10-7	2.46×10 ¹⁰	10
8.19	8.43	2.77×10 ³	9.16×10 ¹¹	1.22×10 ⁻⁶	1.85×10 ¹⁰	5
6.55	7.27	2.22×10 ³	7.33×10 ¹¹	1.53×10 ⁻⁶	1.47×10 ¹⁰	2
5.38	6.35	1.824×10 ³	6.016×10 ¹¹	1.858×10-6	1.21×10 ¹⁰	1
	(A/W) 32.77 16.26 10.93 8.19 6.55	(A/W) (dB) 32.77 17.56 16.26 12.57 10.93 10.06 8.19 8.43 6.55 7.27	(A/W)(dB)(%) 32.77 17.56 1.11×10^4 16.26 12.57 5.51×10^3 10.93 10.06 3.70×10^3 8.19 8.43 2.77×10^3 6.55 7.27 2.22×10^3	(A/W)(dB)(%)(Jones) 32.77 17.56 1.11×10^4 3.66×10^{12} 16.26 12.57 5.51×10^3 1.82×10^{12} 10.93 10.06 3.70×10^3 1.22×10^{12} 8.19 8.43 2.77×10^3 9.16×10^{11} 6.55 7.27 2.22×10^3 7.33×10^{11}	(A/W)(dB)(%)(Jones)(W) 32.77 17.56 1.11×10^4 3.66×10^{12} 3.05×10^{-7} 16.26 12.57 5.51×10^3 1.82×10^{12} 6.15×10^{-7} 10.93 10.06 3.70×10^3 1.22×10^{12} 9.15×10^{-7} 8.19 8.43 2.77×10^3 9.16×10^{11} 1.22×10^{-6} 6.55 7.27 2.22×10^3 7.33×10^{11} 1.53×10^{-6}	(A/W)(dB)(%)(Jones)(W) 32.77 17.56 1.11×10^4 3.66×10^{12} 3.05×10^{-7} 7.39×10^{10} 16.26 12.57 5.51×10^3 1.82×10^{12} 6.15×10^{-7} 3.66×10^{10} 10.93 10.06 3.70×10^3 1.22×10^{12} 9.15×10^{-7} 2.46×10^{10} 8.19 8.43 2.77×10^3 9.16×10^{11} 1.22×10^{-6} 1.85×10^{10} 6.55 7.27 2.22×10^3 7.33×10^{11} 1.53×10^{-6} 1.47×10^{10}

Table	S1	
-------	----	--

On/Off	Responsivity	LDR	EQE	Detectivity	NEP	Gain	Intensity
ratio	(A/W)	(dB)	(%)	(Jones)	(W)		(µW/cm²)
(Ip/Id)							
3.14	1.43	9.94	484.11	1.59×10 ¹¹	7.00×10 ⁻⁶	3.22×10 ⁹	375
2.79	2.25	8.94	761.95	2.51×10 ¹¹	4.45×10 ⁻⁶	5.06×10 ⁹	200
2.35	2.25	7.42	761.94	2.51×10 ¹¹	4.45×10 ⁻⁶	5.06×10 ⁹	150
2.13	2.82	6.55	955.42	3.15×10 ¹¹	3.55×10 ⁻⁶	6.35×10 ⁹	100
2.07	5.38	6.35	1824.37	6.02×10 ¹¹	1.85×10 ⁻⁶	1.21×10 ⁹	50