Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

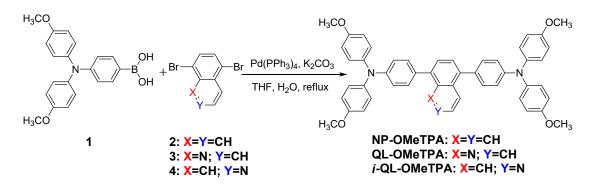
Self-Passivation Hole-Transporting Materials with Pyridine-Contained Core for

Antimony Chalcogenide Solar Cells Studied under Dopant-free Conditions

Shuangting Xu, Jing Wu, Fuling Guo*, Miaomiao Wu, Sijian Chen, Wangchao Chen,

Chengwu Shi,

School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui,


230009, PR China

Experimental

Materials and Characterization

All the reagents and solvent were obtained from Sinopharm Group and used without further purification unless mentioned. The 1,4-dibromonaphthalene, 5,8dibromoquinoline, 5,8-dibromoisoquinoline, (4-(bis(4-methoxyphenyl)amino)phenyl) boronic acid. Potassium antimony (III) L(+)hemihydrate tartrate (C₄H₄KO₇Sb·0.5H₂O), and sodium thiosulfate pentahydrate (Na₂S₂O₃·5H₂O) were purchased form Innochem Science & Technology co., Ltd, Beijing. The selenourea (CH₄N₂Se) were got from TCI(Shanghai)Development Co., Ltd. The Cadmium(II) nitrate (Cd(NO₃)₂), Chromium(II) chloride (CdCl₂), thiourea and ammonia were obtained from Shanghai Aladdin Biochemical Technology Co., Ltd. The fluorine tin oxide conductive glasses (FTO, transmission >90%, 12~14 Ω per square) were obtained from TEC 15, U.S.A.). the indium-tin oxide conductive glasses (ITO, transmission >90%, 8~9 Ω per square) were obtained from GeAoChem China). The ¹H NMR and ¹³C NMR spectra were measured on the 400 MHz Bruker spectrometer. The UV-vis spectra were tested on U3900H UV-vis spectrophotometer. The HR-MS-ESI was measured on Vanquish Q Exactive Plus (Thermo Fisher Scientific, Germany), The CV measurement (cyclic voltammetry) was recorded by a CHI660d electrochemical analyzer through a standard three-electrode cell with a glassy carbon electrode as working electrode, a Pt wire as counter electrode, and a saturated calomel electrode (SCE) as reference electrode, the ferrocene (Fc/Fc⁺) as external reference (vs. Fc/Fc⁺ +0.63 V vs. NHE +4.44 eV).^{\$1,\$2}

Scheme S1. Synthetic Route for NP-OMeTPA, QL-OMeTPA and i-QL-OMeTPA

Synthesis of 4,4'-(naphthalene-1,4-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) (NP-OMeTPA): A 50 mL flask with 4-(bis(4-methoxyphenyl)amino)phenyl)boronic acid (1) (366mg, 1.05mmol), 1,4-dibromonaphthalene (**2**) (100mg, 0.35mmol), Pd(PPh₃)₄ (0.016 mmol, 20 mg) and 0.5ml saturated K₂CO₃ aqueous solution in 30ml Tetrahydrofuran (THF) was stirred and reflux for 18 h under N₂ atmosphere. After cooling down to room temperature, the mixture was filtered and extracted with CH₂Cl₂ for three times. The organic layers were collected and dried to solid powder. The purified product was obtained by column chromatography on silica gel using CH₂Cl₂/PE(Petroleum ether) (1/2, v/v) as eluent to yield a faintly yellow powder (160mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (m, 2H), 7.47 (m, 4H), 7.36 (d, *J* = 8.6 Hz, 4H), 7.20-7.17 (m, 8H), 7.07 (m, 4H), 6.92-6.88 (m, 8H), 3.84 (s, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 155.95, 147.96, 141.00, 139.26, 135.78, 132.70, 132.14, 130.69, 127.14, 126.78, 126.56, 126.45, 120.02, 114.78, 114.74, 55.52. HRMS (EIS-TOF, m/z): [M+H] calcd for (C₅₀H₄₂N₂O₄), 735.3223, found 735.3173.

Synthesis of 4,4'-(quinoline-5,8-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) (QL-OMeTPA): The synthetic method of product QL-OMeTPA was similar to NP- **OMeTPA**, with 5,8-dibromoquinoline (**3**) (100mg, 0.35mmol) replacing 1,4dibromonaphthalene (**2**). The product was obtained by column chromatography using eluent CH₂Cl₂/PE (2/1, v/v) to afford a canary yellow powder (133mg, 52%). ¹H NMR (400 MHz, CDCl₃) δ 8.97 (dd, J = 4.0, 1.6 Hz, 1H), 8.43 (dd, J = 8.6, 1.6 Hz, 1H), 7.76 (d, J = 7.5 Hz, 1H), 7.61 (d, J = 8.6 Hz, 2H), 7.55 (d, J = 7.4 Hz, 1H), 7.38 (dd, J = 8.5, 4.1 Hz, 1H), 7.32 (d, J = 8.6 Hz, 2H), 7.22-7.14 (m, 8H), 7.06 (d, J = 8.3 Hz, 4H), 6.93-6.86 (m, 8H), 3.84 (s, 12H).¹³C NMR (100 MHz, CDCl₃) δ 156.09, 155.88, 149.60, 148.33, 147.93, 146.33, 141.03, 140.78, 139.27, 134.79, 131.48, 131.26, 131.16, 130.65, 129.47, 127.27, 126.91, 120.55, 119.86, 119.68, 114.82, 114.69, 55.52. HRMS (EIS-TOF, m/z): [M+H] calcd for (C₄₉H₄₂N₃O₄) 736.3175, found 736.3149.

Synthesis of 4,4'-(isoquinoline-5,8-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) (i-QL-OMeTPA): The synthetic method of product *i*-QL-OMeTPA was resembled that of NP-OMeTPA, with 5,8-dibromoisoquinoline (4) (100mg, 0.35mmol) replacing 1,4dibromonaphthalene (2). The product was obtained by column chromatography using eluent CH₂Cl₂/PE (4/1, v/v) to afford a light yellow powder (92.3mg, 36%). ¹H NMR (400 MHz, CDCl₃) δ 9.47 (s, 1H), 8.51 (d, *J* = 6.0 Hz, 1H), 7.90 (d, *J* = 6.0 Hz, 1H), 7.67 (d, *J* = 7.4 Hz, 1H), 7.56 (d, *J* = 7.4 Hz, 1H), 7.40-7.31 (m, 4H), 7.23-7.15 (m, 8H), 7.12-7.03 (m, 4H), 6.94-6.87 (m, 8H), 3.84 (s, 12H).¹³C NMR (100 MHz, CDCl₃) δ 156.12, 151.70, 148.59, 148.44, 142.82, 140.74, 139.87, 137.91, 134.72, 130.77, 130.70, 130.52, 130.31, 127.60, 127.14, 126.94, 126.92, 119.90, 119.86, 118.79, 114.83, 55.52. HRMS (EIS-TOF, m/z): [M+H] calcd for (C₄₉H₄₂N₃O₄) 736.3175, found 736.3147.

Device Fabrication

The Sb₂(S,Se)₃ solar cells were fabricated following the previous report.^{S3} The Sb₂(S,Se)₃ film was deposited through the hydrothermal method using C₄H₄KO₇Sb·0.5H₂O as Sb-source, Na₂S₂O₃·as S-source and CH₄N₂Se as Se-source on FTO conductive glass deposited CdS layer to form the FTO/CdS/Sb₂(S,Se)₃ framework.^{S4} After the fabrication, the HTMs layers were spin-coated upon the Sb₂(S,Se)₃ film at 3000 rpm for 30 s with 5mg/mL in chlorobenzene, then annealing at 105 °C for 10 min, followed by the thermal evaporation technology of Au counter electrode at high-vacuum. The active area of the solar cells was defined as 0.09 cm².

Device Characterizations

The J-V curves of these solar cells employed using Newport 3A solar simulator. The parameters were obtained with Keithley model 2400 digital source meter. The EQE spectra were measured by Newport IPCE/QE test system. The electrical impedance spectroscopy (EIS) measurements were carried out on CHI660d electrochemical analyzer, with 0.6V voltage bias and frequency from 100 mHz to 1000 kHz, fitted with Z-View software. The time-resolved photoluminescence measurements (TR-PL) with FTO/CdS/Sb₂(S,Se)₃/HTM structure were carried out on a LaserStrobe Time-Resolved Spectrofluorometer (Photon Technology International (Canada) Inc.) with a USHIO xenon lamp source, a GL-302 high-resolution dye laser (lifetimes 100 ps to 50 ms, excited by a Nitrogen laser) and a 914 photomutiplier detection system.

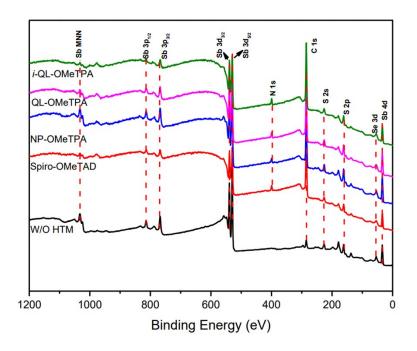


Fig. S1 The total XPS spectra of the pristine Sb₂(S,Se)₃ and Sb₂(S,Se)₃ with these

HTMs

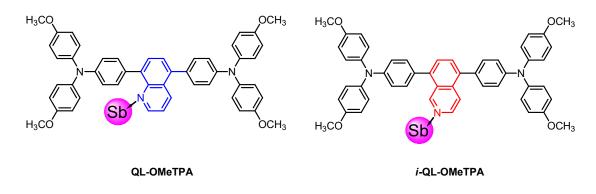


Fig. S2 Schematic illustration of the coordination effect for pyridine moieties with Sb atoms.

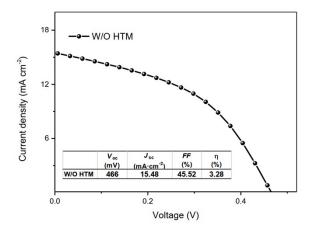


Fig. S3 the J-V curves of the champion solar cells based on $Sb_2(S,Se)_3$ film without HTMs, with an inset table showing the detail paraments.

Table S1 the average paraments of solar cells with NP-OMeTPA, QL-OMeTPA and *i*-QL-OMeTPA as HTMs compared with Spiro-OMeTAD under dopant-free conditions.

HTMs	V_{oc} (mV)	J_{sc}	FF	η
		$(mA cm^{-2})$	(%)	(%)
NP-OMeTPA	620±12	16.53 ± 0.45	48.38±2.92	4.95±0.22
QL-OMeTPA	629±10	15.70 ± 0.23	50.41±1.57	5.07 ± 0.39
i-QL-OMeTPA	621±11	15.51±0.33	43.78 ± 1.88	4.22 ± 0.14
Spiro-OMeTAD	618±16	15.53 ± 0.65	52.06±1.38	4.99±0.32

Based on 12 cells.

Table S2 the paraments summarized from the EIS and SCLC measurements

HTMs	R_s	R _{rec}	<i>Hole Mobility</i> (μ_h)
	(Ω)	(Ω)	$(cm^2 V^{-1} s^{-1})$
NP-OMeTPA	9.87	1731	6.36×10 ⁻⁵
QL-OMeTPA	8.49	3505	5.41×10 ⁻⁵
i-QL-OMeTPA	16.64	4052	3.59×10 ⁻⁵
Spiro-OMeTAD	8.00	1608	7.33×10 ⁻⁵

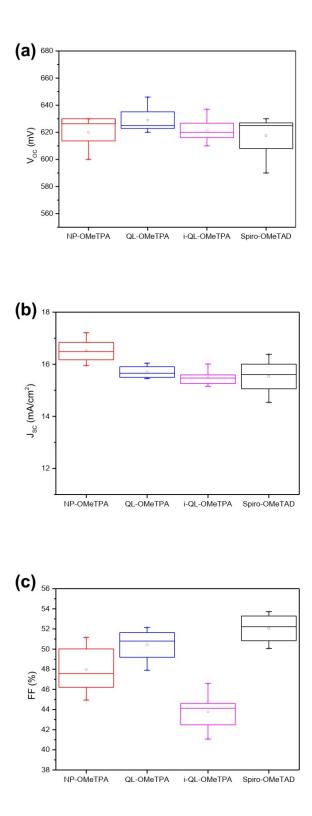


Fig. S4 a) Box plots showing device performance statistical distribution of a) V_{oc} , b) J_{sc} and c) FF based on these HTMs summarized from 12 cells.

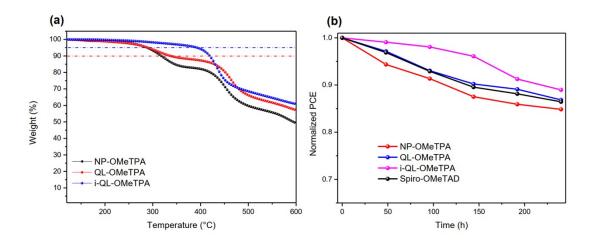


Fig. S5 a) TGA curves of pyridine-contained QL-OMeTPA, *i*-QL-OMeTPA and the reference NP-OMeTPA without pyridine; b) the stability test of $Sb_2(S,Se)_3$ solar cells based on these HTMs (storage in ambient air, RT, 35-60% humidity)

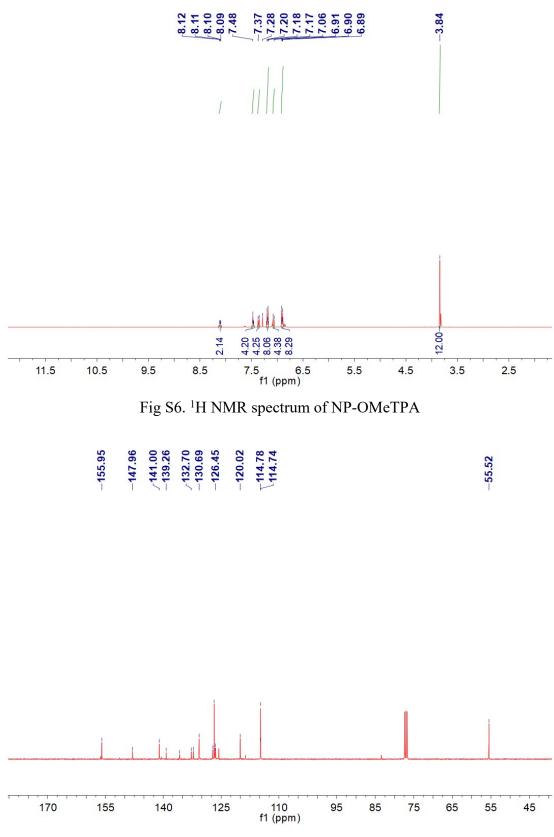
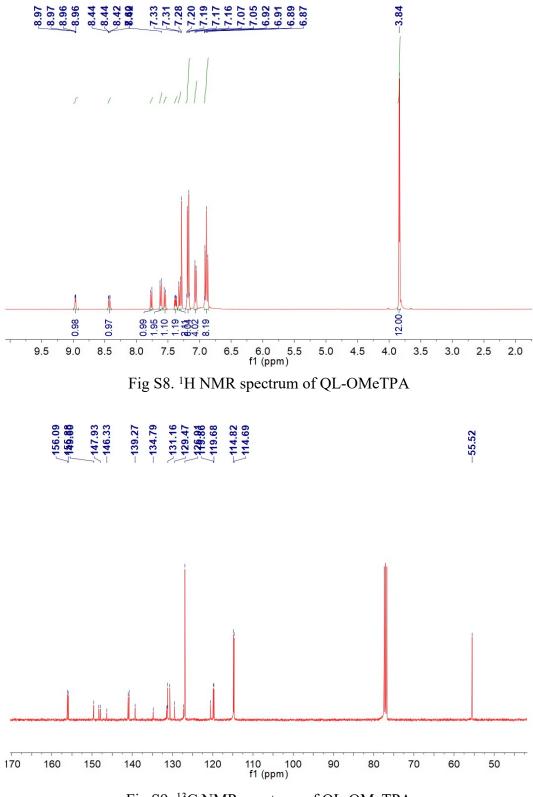
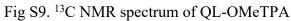




Fig S7. ¹³C NMR spectrum of NP-OMeTPA

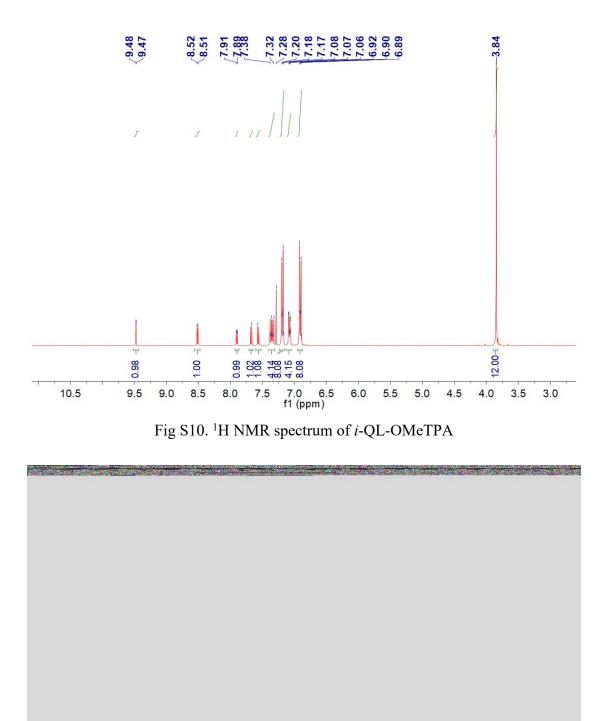


Fig S11. ¹³C NMR spectrum of *i*-QL-OMeTPA

References

- S1 W.C Chen, H.Y. Zhang, J.J. Sun, R. Ghadari, Z.G. Zhang, F. Pan, K. Lv, X.
 Sun, F.L. Guo, C.W. Shi, *J. Power Sources*, 505 (2021) 230095;
- S2 N.J. Jeon, H.G. Lee, Y.C. Kim, J. Seo, J.H. Noh, J. Lee, S.I. Seok, *J. Am. Chem. Soc.*, 136 (2014) 7837-7840;
- S3 C. Jiang, J. Zhou, R. Tang, W. Lian, X. Wang, X. Lei, H. Zeng, C. Zhu, W. Tang,T. Chen, *Energ. Environ. Sci.*, 14 (2021) 359-364.
- S4 Y. Xiang, H. Guo, Z. Cai, C. Jiang, C. Zhu, Y. Wu, W. H. Zhu, T. Chen, Chem.

Commun., 2022, 58, 4787-4790