Suppressing initial capacity fade in Li-rich Li₅FeO₄ with anionic redox by partial Co substitution – a first-principles study

Anu Maria Augustine,^{ab} Vishnu Sudarsanan,^{ab} and P. Ravindran^{*ab}

^a Department of Physics, Central University of Tamil Nadu, Thiruvarur-610005, India;

^b Simulation Center for Atomic and Nanoscale MATerials, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India.

E-mail: raviphy@cutn.ac.in

Supplementary Information

Table S1

Compound	5	structural par	ameters	magnetic moment			
•	a (Å)	b (Å)	c (Å)	V (Å ³)	Fe	Со	Total
					(μ_B/atom)	(μ_B/atom)	$(\mu_B/f.u)$
Li ₅ FeO ₄	9.195	9.253	9.244	786.43	4.116		4.796
	9.153ª	9.218ª	9.213ª	777.32ª			
Li _{5.125} Fe _{0.875} Co _{0.125} O ₄	9.243	9.244	9.258	791.01	4.117	2.586	4.554
Li _{5.25} Fe _{0.75} Co _{0.25} O ₄	9.292	9.239	9.268	795.7	4.117	2.586	4.313
$Li_{5.375}Fe_{0.625}Co_{0.375}O_4$	9.332	9.226	9.282	799.19	4.115	2.574	4.072
$Li_{5.5}Fe_{0.5}Co_{0.5}O_4$	9.342	9.265	9.29	804.12	4.121	2.588	3.83
Li _{5.625} Fe _{0.375} Co _{0.625} O ₄	9.336	9.267	9.316	805.84	4.121	2.588	3.588
Li _{5.75} Fe _{0.25} Co _{0.75} O ₄	9.331	9.285	9.339	809.13	4.124	2.588	3.348
$Li_{5.875}Fe_{0.125}Co_{0.875}O_4$	9.347	9.263	9.348	809.41	4.134	2.591	3.107
Li ₆ CoO ₄	9.351	9.305	9.361	814.41	2.594	2.866	
Li ₅ Fe _{0.875} Co _{0.125} O ₄	9.194	9.248	9.232	784.97	4.116	2.953	4.668
Li ₅ Fe _{0.75} Co _{0.25} O ₄	9.196	9.239	9.222	783.51	4.116	2.954	4.54
Li ₅ Fe _{0.625} Co _{0.375} O ₄	9.196	9.226	9.209	781.26	4.117	2.952	4.412
$Li_5Fe_{0.5}Co_{0.5}O_4$	9.191	9.219	9.206	780.11	4.116	2.951	4.285
Li ₅ Fe _{0.375} Co _{0.625} O ₄	9.192	9.204	9.191	777.57	4.116	2.953	4.156
Li ₅ Fe _{0.25} Co _{0.75} O ₄	9.197	9.19	9.179	775.85	4.116	2.953	4.028
Li ₅ Fe _{0.125} Co _{0.875} O ₄	9.195	9.178	9.167	773.6	4.116	2.952	3.901
Li ₅ CoO ₄	9.194	9.175	9.153	772.12	2.953	3.773	
$Li_{4.875}Fe_{0.875}Co_{0.125}O_4$	9.174	9.261	9.243	785.23	4.115	3.143	4.777
$Li_{4.75}Fe_{0.75}Co_{0.25}O_4$	9.163	9.275	9.24	785.3	4.113	3.143	4.758
$Li_{4.625}Fe_{0.625}Co_{0.375}O_4$	9.154	9.28	9.236	784.54	4.113	3.145	4.74
Li _{4.5} Fe _{0.5} Co _{0.5} O ₄	9.125	9.288	9.226	781.88	4.113	3.148	4.722
Li _{4.375} Fe _{0.375} Co _{0.625} O ₄	9.105	9.291	9.238	781.42	4.114	3.146	4.703
Li _{4.25} Fe _{0.25} Co _{0.75} O ₄	9.095	9.27	9.258	780.45	4.114	3.146	4.685

$Li_{4.125}Fe_{0.125}Co_{0.875}O_{4}$	9.124	9.227	9.24	777.85	4.114	3.147	4.668
Li ₄ CoO ₄	9.09	9.31	9.179	776.71	3.15	4.647	

^a Johnson, C. S., Kang, S. H., Vaughey, J. T., Pol, S. V., Balasubramanian, M., & Thackeray, M. M. (2010). Li2O Removal from Li5FeO4: A cathode precursor for lithium-ion batteries. *Chemistry of Materials*, *22*(3), 1263-1270.

Figure S1

Supplementary Note S1 : Structural models

As we have discussed in the manuscript, the orthorhombic crystal structure of $L_{15}FeO_4$ can be defined as the substitution of a single Fe³⁺ ion by removing three Li from the 2 x 2 x 2 supercell of rocksalt phase Li₂O. This substitution will introduce 16 Li vacancies in the crystal lattice. In the present study, we have substituted Co at the Fe sites in $Li_yFe_{(1-x)}Co_xO_4$ with x = 0.00, 0.125, 0.250, 0.375, 0.500, 0.625, 0.750, 0.875, 1.00 and y = 5+x, 5, 5-x where Co posses +2, +3, and +4 oxidation states depending upon the composition. To obtain Co²⁺ we have added an extra Li with each Co ion. In this case, the Li will be introduced to the Li vacancy site adjacent to the substituted Co sites (note that there are 16 Li vacant sites already available in each unit cell of Li_5FeO_4). Therefore, when we increase the Co²⁺ concentration, the Li concentration also get increases. The Li and Co site at each Co²⁺

concentration is given in Figure S2 (a). To model the Co^{3+} substitution, the Li concentration is unaltered since Fe is in +3 oxidation state. The Co^{3+} substituted sites at different Co concentrations are shown in Figure S2 (b). To model Co^{4+} substitution, we have removed one of the Li closer to the substituted Co site. The respective Li and Co position at each stage of Co^{4+} substitutions are given in Figure S2 (c). We have modeled the Co substitution in such a way that the Co ions are distributed homogeneously throughout the system.

 $Li_yFe_{(1-x)}Co_xO_4$. The yellow balls represent the co-substituted Li (each arrow shows the Li added at a particular composition) with Co^{2+} substitution. The FeO₄ and CoO₄ tetrahedra are given in polyhedral representation. The concentration of Co atom increases from (i) to (viii) (x = (i) 0.125, (ii) 0.250, (iii) 0.375, (iv) 0.500, (v) 0.625, (vi) 0.750, (vii) 0.875, (viii) 1.00)

 CoO_4 tetrahedra are given in polyhedral representation. The concentration of Co atom increases

from (i) to (viii) (x = (i) 0.125, (ii) 0.250, (iii) 0.375, (iv) 0.500, (v) 0.625, (vi) 0.750, (vii) 0.875, (viii) 1.00)

(x = (i) 0.125, (ii) 0.250, (iii) 0.375, (iv) 0.500, (v) 0.625, (vi) 0.750, (vii) 0.875, (viii) 1.00)