Supporting Information

ZIF-8 composite SiO₂ enhanced high-performance PEO-based solid-state electrolyte for Li-metal batteries

Furong Zhang a, Kunpeng Jiang a, Guisheng Zhu a*, Huarui Xu a, Xiuyun Zhang a,

Yunyun Zhao^a, Yejun Zhang^b, Qianbing Wang^b, Pengfei Pang^a and Aibing Yu^c

^a Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, P.R. China.

^b Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.

^c ARC Hub for Computational Particle Technology, Monash University, Clayton,
Victoria 3800, Australia.

Figure S1. SEM images of (a) ZIF-8/IL and (b) ZIF-8/SiO2/IL.

Figure S2. XRD pattern of SiO₂.

Figure S3. BET curves of (a) ZIF-8 and ZIF-8/IL. Pore size distribution of (b) ZIF-8 and ZIF-8/IL.

Figure S4. AC impedance spectra of (a) PZS-1 and (b) PZS-2, in the steel symmetrical cells at 30-80°C.

Figure S5. DC polarization curves of (a) PZS-1 and (b) PZS-2, in the Li symmetrical cell under 60°C at a potential step of 10 mV. Inset: the AC impedance spectra of the cell before polarization and after steady-state current conditions.

Rs Rct W CPE	s Rs: ohmic √s Rct: charg	Rs: ohmic resistance Rct: charge-transfer resistance		
Batteries	Rs/Ω	Rct/Ω		
LFP/PZS-1/Li	34.65	138.3		
LFP/PZS-2/Li	17.71	83.36		
LFP/PZS-3/Li	8.88	50.88		

Figure S6. The equivalent circuit is used to fit the experimental data, the obtained data is shown in the table.

No.	Composition	σ (S cm ⁻¹)	Voltage window (V)	t_{Li}^+	Ref
1	PVA/BMIMOTf /LLZTO	2×10 ⁻³ (60 °C)	4	0.76	S 1
2	PEO/PVDF /LLZTO	3.37×10 ⁻⁴ (60 °C)	4.8	-	S2
3	PEO/LLZTO	1.12×10 ⁻⁵ (25 °C)	5.5	0.58	S3
4	PEO-n-UIO/IL	$1.3 \times 10^{-4} (30 \text{ °C})$	4.5	0.26	S4
5	PEO-UIO-66- NH2	3.1×10 ⁻⁵ (25 °C)	4.97	0.72	S5
6	PTFE-ZIF-8/IE	1.05×10^{-4}	4.7	0.52	S6
7	PEO-ZIF- 8@SiO ₂ /IL	2.35×10⁻⁴ (30 °C)	5.5	0.6	This work

Table S1 Summary of novel materials based on Li-ion composite solid-state electrolytes.

References

- S1. H. Jeon, H. A. Hoang and D. Kim, J. Energy Chem., 2022, 74, 128-139.
- S2. L. Li, Y. Deng, H. Duan, Y. Qian and G. Chen, J. Energy Chem., 2022, 65, 319-328.
- S3. C.-Z. Zhao, X.-Q. Zhang, X.-B. Cheng, R. Zhang, R. Xu, P.-Y. Chen, H.-J. Peng, J.-Q. Huang and Q. Zhang, Proc. Natl. Acad. Sci. U. S. A., 2017, **114**, 11069-11074.
- S4. J. F. Wu and X. Guo, J. Mater. Chem. A, 2019, 7, 2653-2659.
- S5. H. Y. Huo, B. Wu, T. Zhang, X. S. Zheng, L. Ge, T. W. Xu, X. X. Guo and X. L. Sun, Energy Storage Mater., 2019, 18, 59-67.
- S6. C. Sun, J. H. Zhang, X. F. Yuan, J. N. Duan, S. W. Deng, J. M. Fan, J. K. Chang, M. S. Zheng and Q. F. Dong, #N/A, 2019, 11, 46671-46677.