Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2023

Subsurface Oxygen Reduction Reaction Activity on Ti₂N MXene Revealed by *In-situ* Raman Spectroelectrochemistry

Eugenie Pranada¹, Denis Johnson², Ray Yoo², Abdoulaye Djire^{1,2*}

¹Department of Materials Science and Engineering, Texas A&M University, College Station, TX

77843, USA

²Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA

Corresponding Author: adjire@tamu.edu

Figure S1. Schematic of the three-electrode electrochemical cell used for the electrochemical measurements.

Figure S2. Schematic of the screen-printed cell used for the *in-situ/operando* Raman spectroelectrochemistry.

Figure S3. XPS Spectra of pristine Ti_2N Few-layer MXene. a) Ti 2p b) N 1s c) O 1s. The surface chemistry comparison and the passivation layer on the pristine Ti_2N is tracked according to the Ti 2p and O 1s spectra.

Figure S4. CV of Ti_2N in 0.1 M KOH electrolytic solution. The data are collected at different scan rates to obtain the electrochemical surface area.

Figure S5. Electrochemical surface area (ECSA) of Ti_2N in 0.1 and 1.0 M KOH electrolytic solutions at 0.86 V vs RHE.

Figure S6. CV of Ti_2N with varying scan rates a) before and b) after CA measurements. Data collected in 0.1M KOH electrolytic solution.

Figure S7. Raman spectra of Ti₂N MXene in O₂-sat'd 0.1 M KOH, taken at 50% laser power.

	Potential (V vs		Limiting j	Tafel Slope	CA or	Dof
Catalyst	RHE)				CP test	
	Onsot	Half-	(mA/cm ²)	(mV/dec)	(h), %	Nei
	Onset	wave			I/I ₀	
10% Pt/C	0.91	0.75	3.2	94.8	4.5, 47.19	This
						work
Ti2N	0.70	0.56	1.61	69.3	15, 81.97	This
						work
Ti ₃ C ₂	0.58	0.50	1.1	104.9	4.5, 54.53	This
						work
SrTiO ₃ /Ti ₃ C ₂	0.87ª	0.78	5.63	89.6	5, -	1
Co/NCNTs@Ti ₃ C ₂ T _x	0.936	0.815	5.9	-	5.6, 92.4	2
FeCo-N-d-Ti ₃ C ₂	0.96	0.8	5.6	108	5.6, 90+	3
MXene@PPy-800	0.85	0.71	4	-	2.2, 86.4	4
FePc/Ti ₃ C ₂ T _x	0.95ª	0.886	5.5ª	-	1.4, 74	5
Co-CNT/Ti ₃ C ₂ -60	0.86ª	0.82	5.55	63	2.8, 90	6
NiCo ₂ O ₄ /Ti ₃ C ₂ F _x (OH) _x	0.85ª	0.7	5.82	-	-	7

Table S1. Recent works on ORR in	n 0.1 M KOH electrolytic solution.
----------------------------------	------------------------------------

a: estimated from graph

References

- 1. X. Hui, P. Zhang, Z. Wang, D. Zhao, Z. Li, Z. Zhang, C. Wang and L. Yin, ACS Applied *Energy Materials*, 2022, **5**, 6100-6109.
- 2. Y. Zhang, H. Jiang, Y. Lin, H. Liu, Q. He, C. Wu, T. Duan and L. Song, *Advanced Materials Interfaces*, 2018, **5**.
- 3. L. Chen, Y. Lin, J. Fu, J. Xie, R. Chen and H. Zhang, *ChemElectroChem*, 2018, **5**, 3307-3314.
- 4. Y. Lei, N. Tan, Y. Zhu, D. Huo, S. Sun, Y. Zhang and G. Gao, *J. Electrochem. Soc.*, 2020, **167**, 116503.
- 5. Z. Li, Z. Zhuang, F. Lv, H. Zhu, L. Zhou, M. Luo, J. Zhu, Z. Lang, S. Feng, W. Chen, L. Mai and S. Guo, *Adv Mater*, 2018, **30**, e1803220.
- 6. J. Chen, X. Yuan, F. Lyu, Q. Zhong, H. Hu, Q. Pan and Q. Zhang, *Journal of Materials Chemistry A*, 2019, 7, 1281-1286.
- 7. H. Lei, S. Tan, L. Ma, Y. Liu, Y. Liang, M. S. Javed, Z. Wang, Z. Zhu and W. Mai, ACS Appl Mater Interfaces, 2020, 12, 44639-44647.