Ionic liquid as modulate interface for high-efficient and stable perovskite solar cells

Xiang Chen,^a Lixin Song,^{*a} Ningxia Gu,^a Pengyun Zhang,^a Lei Ning,^a Pingfan Du,^a Fengfeng

Chen,^b and Jie Xiong^{*a, b}

a College of Textile Science and Engineering, b School of Materials Science & Engineering,

Zhejiang Sci-Tech University, Hangzhou, 310018, China. E-mail: jxiong@zstu.edu.cn,

lxsong@zstu.edu.cn

Fig.S1 Chemical structure of BMIMHSO₄ molecule.

Fig.S2 Device structure of the PSCs.

Fig.S3 The high-resolution XPS spectra of (a) N and (b) S element.

Fig.S4 The EDS measurement of TiO₂-IL sample with the top-right showing the detail element analysis.

Fig.S5 The SEM images of (a) $\rm TiO_2$ and (b) $\rm TiO_2\mathchar`-IL$ film.

Fig.S6 Contact angle performance using DMSO solvent of (a) TiO₂ and (b) TiO₂ film.

Fig.S7 (a)Transmission spectra and (b) Tauc plot of absorption spectra of TiO₂ and TiO₂-IL film.

Fig.S8 The grain size distribution histograms of (a) TiO₂-based and (b) TiO₂-IL-based perovskite film.

Fig.S9 Statistics on photovoltaic parameters for studied PSCs at various IL concentrations. J-V curves collected at 1 sun irradiation are utilized to derive parameters. A box is used to illustrate the standard error. Twenty devices with a cell active area of 0.06 cm² were fabricated for each PSC structure.

Fig.S10 Hysteresis index of twenty devices.

Samples	Mobility (cm ² V ⁻¹ S ⁻¹)	Conductivity (mS cm ⁻¹)
TiO ₂	1.43×10 ⁻⁷	1.27×10 ⁻³
TiO ₂ -IL	4.88×10 ⁻⁷	1.93×10 ⁻³

Table S1 The electron mobility and conductivity parameters based on two ETL.

Table S2 Photovoltaic parameters of PSCs based on TiO₂-IL with different concentrations.

Samples	Jsc (mA cm ⁻²)	Voc (V)	FF (%)	PCE (%)
Without treatment	22.82	1.05	66.20	15.92
1 mg/ml	23.08	1.08	70.23	17.56
2 mg/ml	23.56	1.09	74.21	19.13
5 mg/ml	23.18	1.06	68.36	16.83

Table S3 Photovoltaic parameters measured at different scan directions of the champion PSCs based on the 0

	/ 1	1	^		/ 1	TT		. •	1 .
122 001	100	010	• •	122 01	1100		o o mo o m t m	otion	domago
IIIO/		ина	/	IIIO/			concern	anon	nevices
1116/	1111	unu	_	1116/	1111	11	COncentre	auon	uc / 1000.
-				-					

Samples	Scan direction	Jsc (mA cm ⁻²)	Voc (V)	FF (%)	PCE (%)	H (%)
Without treatment	Reverse	22.82	1.05	66.20	15.92	9.70
	Forward	22.55	1.04	61.76	14.53	8.70
2 mg/ml	Reverse	23.56	1.09	74.21	19.13	2.40
	Forward	23.45	1.09	72.86	18.67	2.40

Samples	A ₁	τ_1 (ns)	A ₂	τ_2 (ns)	$\tau_{avg}\left(ns\right)$
TiO ₂	1.12	6.53	0.25	212.79	187.86
TiO ₂ -IL	1.89	2.64	0.57	23.55	17.88

Table S4. The fitting parameters of TRPL of perovskite film for growing on TiO₂ and TiO₂-ILsubstrates.

Table S5 the electron trap density was calculated by SCLC measures of the deposited on TiO_2 film and TiO_2 -IL

film devices.

Samples	$V_{TFL}(V)$	N _{trap} (cm ⁻³)
TiO ₂	0.683	$1.20 imes 10^{14}$
TiO ₂ -IL	0.475	$0.83 imes10^{14}$

Table S6 EIS parameters of PSCs based on TiO_2 and $\text{TiO}_2\text{-IL}$ devices.

Samples	Rs (Ω)	$\operatorname{Rrct}(\Omega)$
TiO ₂	30.48	12388.32
TiO ₂ -IL	22.31	17704.03

Table S7 summarized the stability research about BMIMHSO₄ IL with other ILs.

Ionic liquid	Perovskite	PCE (%)	Decrease in stability (%) after hours	Ref

MAAc	CsPbIBr ₂	8.85	Air(room temperature), remains 82% of initial	1
	-		PCE after 30 days.	
BMIMPE	CoPhi.Br	12.10	Air(20 °C, ~20% RH), remains 91% of initial	2
Divitiviti 1 6	C31 012D1	15.17	PCE after 60 days.	
		22.07	Air(35±5% RH), remains 85% of initial PCE	3
FBABF ₄	$(FAP6I_3)_{1-x}(MAP6Br_3)_x$	23.07	after 3000h.	J
N(CH ₃) ₄ OH			Desiccator(~15% RH), remains 97% of initial	
(TMAH)	$FA_{0.75}MA_{0.25}PbI_{2.5}Br_{0.5}$	20.28	PCE after 360h.	4
			Air(AM 1.5G illumination), remains 85% of	_
BMIMBF ₄	MAPbI ₃	19.62	initial PCE after 240 min.	5
		20.80	Air(85 °C, dark, under 45% RH), remains less	6
BMIMBF ₄	$FA_{0.83}MA_{0.17}Pb(I_{0.83}Br_{0.17})_3$		than 50% of initial PCE after 800h.	
			Dry air(RH<5%), remains 93% of initial PCE	
EMIMI	MAPbI ₃	14.59	after 360h; air (30-40% RH), remains 51% of	7
			initial PCE after 360h.	
			Air, remains 93.5% of initial PCE after 45	
[EMIM]PF ₆	MAPbI ₃	13.50	days.	8
			Light, N2-filled glovebox, remains 86% of	
MAAc	MAPbI ₃	21.08	initial PCE after 400h.	9
		19.13	Air(~40% RH,25±5°C, dark), remains 90% of	This
BMIMHSO ₄	MAPbI ₃		initial PCE after 600h.	work

Reference

- L. Shi, H. Yuan, X. Sun, X. Li, W. Zhu, J. Wang, L. Duan, Q. Li, Z. Zhou, Z. Huang, X. Ban and D. Zhang, ACS Appl. Energy Mater., 2021, 4, 10584-10592.
- R. Yin, K.-X. Wang, S. Cui, B.-B. Fan, J.-W. Liu, Y.-K. Gao, T.-T. You and P.-G. Yin, ACS Appl. Energy Mater., 2021, 4, 9294-9303.
- D. Gao, L. Yang, X. Ma, X. Shang, C. Wang, M. Li, X. Zhuang, B. Zhang, H. Song, J. Chen and C. Chen, J. Energy Chem., 2022, 69, 659-666.
- C. Huang, P. Lin, N. Fu, K. Sun, M. Ye, C. Liu, X. Zhou, L. Shu, X. Hao, B. Xu, X. Zeng, Y. Wang and S. Ke, J. Mater. Chem. A, 2018, 6, 22086-22095.
- D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu, X. Wang, C. Li, S. Liu and R. P. H. Chang, Energy Environ. Sci., 2016, 9, 3071-3078.
- N. K. Noel, S. N. Habisreutinger, A. Pellaroque, F. Pulvirenti, B. Wenger, F. Zhang, Y.-H. Lin,
 O. G. Reid, J. Leisen, Y. Zhang, S. Barlow, S. R. Marder, A. Kahn, H. J. Snaith, C. B. Arnold and B. P. Rand, Energy Environ. Sci., 2019, 12, 3063-3073.
- 7. J. Xu, X. Shi, J. Chen, J. Luan and J. Yao, J Solid State Chem, 2019, 276, 302-308.
- 8. W. Zhang, Z. Ren, Y. Guo, X. He and X. Li, Electrochim. Acta, 2018, 268, 539-545.
- D. Li, L. Chao, C. Chen, X. Ran, Y. Wang, T. Niu, S. Lv, H. Wu, Y. Xia, C. Ran, L. Song, S. Chen, Y. Chen and W. Huang, Nano Lett., 2020, 20, 5799-5806.