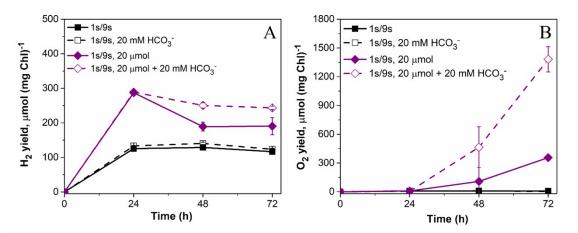
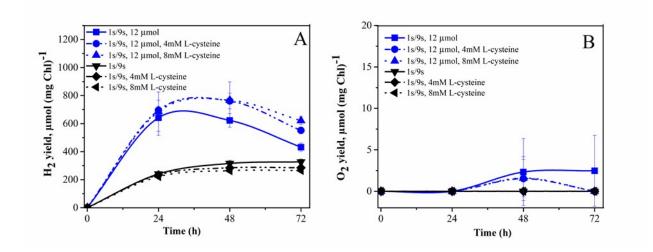
Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2023


> Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels This journal is © The Royal Society of Chemistry 2022

Balancing algal photosynthesis, O₂ consumption and H₂ recycling for sustained H₂ photoproduction in pulse-illuminated algae


Sindhujaa Vajravel, Yagut Allahverdiyeva* and Sergey Kosourov *

Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Finland

Corresponding authors: Sergey Kosourov and Yagut Allahverdiyeva E-mails: serkos@utu.fi; allahve@utu.fi

Suppl. Fig. 1 The effect of bicarbonate supplementation on (A) net H₂ photoproduction and (B) net O₂ evolution yields under the train of 1 s light pulses (280 μ mol m⁻² s⁻¹ irradiance) superimposed on either 9 s darkness or continuous 20 μ mol m⁻² s⁻¹ background light. The initial cultures contained 12 μ g Chl (*a* + *b*) ml⁻¹. The experiments were performed under photoheterotrophic conditions. Each experimental point represents the average of 3 independent replicates ± SD.

Suppl. Fig. 2 Effect of different concentrations of L-cysteine on (A) net H₂ photoproduction and (B) net O₂ evolution by pulse-illuminated algae with 12 μ mol m⁻² s⁻¹ background illumination (blue curves and symbols) and without (black curves and symbols). The experimental settings were the same as in Fig. 1. Values are the mean of 3 independent replicates ± SD.