Optimal Design of a Coupled Photovoltaic-Electrolysis-Battery System for Hydrogen Generation

Aisha Alobaid^{*a,b} and Raymond A. Adomaitis^a

^aDepartment of Chemical and Biomolecular Engineering, Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA

^bChemical Engineering Department, College of Engineering and Petroleum, Kuwait University, 13060, Kuwait

Supplementary Material

Fig. S1. Hourly cloud cover data from Dark Sky API for College Park, MD and the solar irradiance G_{total} calculated at a module tilt angle of 35° for the year 2017, divided into 4 periods: January, February, March (a) April, May, June (b), July, August, September (c), and October, November, December (d).

*Corresponding author

Email: aisha.alobaid@ku.edu.kw

Address: Chemical Engineering Department, College of Engineering and Petroleum, Kuwait University, P.O.Box 5969, Safat, 13060, Kuwait

Fig. S2. Non-zero values of the V_{mp} (i.e., during daylight operation of the PV module), with the mean value calculated.

Fig. S3. Hydrogen production rate and the relative net grid energy, showing the 10 Pareto-Frontier points in red.

Input Parameters		Output
Solar Irradiance Modeling		
$G_{sc} = 1366$	The solar constant (W/m^2)	
$\delta = 23.44^{\circ}$	Earth's declination at $t_d = 0$	
$n_{ast} = 24$	Number of intervals within a day	
i	Index in range n_{ast} $(i = 0 \text{ to } n_{ast} - 1)$ defines	• The Global irradiance G_G
	the time of the day	(W/m^2) , Equation (13)
ϕ	Latitude measured north of the equator (°)	• The total solar irradiance
z	Site elevation (km)	$G_{total} (W/m^2)$, Equation (15)
$ heta_{tilt}$	PV module tilt angle (°)	
CloudsCover	Clouds cover (fraction between 0 and 1)	
PV Module		
I_{ph}	Photo-current (A)	
I_o	Dark saturation current (A)	
R_s	Series resistance (Ω)	
$R_{ m sh}$	Shunt resistance (Ω)	• PV module operating current
eta	Diode ideality factor	I, Equation (16)
X(t)	Dimensionless concentration factor propor-	• PV modules power P_{pv} (kW),
	tional to the global irradiance at time t	$P_{pv} = M_{pv} \times I_{mp} \times V_{mp}$
V	PV module operating voltage (V)	
M_{pv}	Number of PV modules connected in parallel	
Electrolyzer		
N	Number of cells connected in series	• Electrolysis Cell current I_{cell} (mA/cm ²) Equation (17) and
		Fig. 4
М	Number of electrolysis stacks connected in	• Electrolyzer Power P_{c} (kW).
	parallel	Equation (18)
Vcell	Electrlysis cell voltage (V). $V_{cell} = V_{mn}/N$	• Hydrogen Production rate
		$V_{\rm H_2}$ (Nm ³ /h), Equation (20)
Battery		
η_b	Battery round-trip efficiency (%)	• Battery Energy E_b (kWh),
Cap	Battery capacity (kWh)	Equation (21)
P_{pv}	PV modules power (kW)	• Battery state of charge <i>SOC</i> ,
P_e	Power of the Electrolyzer (kW)	Equation (22)
Economic Model		
U_i	Unit j capital cost ($/kW$)	
$U_{\text{O\&M},j}$	Unit $j ext{ O&M cost (\$/kW)}$	
P_j	Power produced or consumed (kW) in unit j	
$\tilde{n_j}$	Lifetime of the j^{th} component (years)	• Annual cost of the system
i	Real discount rate	ACS (\$/yr), Equation (23)
RF	Replacement cost factor	• Levelized cost of energy <i>LCE</i>
NGE	Net grid energy (kWh)	(\$/kWh), Equation (38)
E_{an}	Annual energy produced by the PV system	
	(kWh/yr)	

Table S1. A list of the input parameters and variables used in the model

Fig. S4. LCE and the relative net grid energy, showing the 10 Pareto-Frontier points in red.

Fig. S5. Effect of changing the battery capacity at fixed system design, for M_{pv} of 100 (a), 1,000 (b), 1,500 (c), and 10,000 (d).

Fig. S6. Effect of number of PV modules M_{pv} on the total annualized system cost ACS.

Fig. S7. Simulation results for point 77 in Table 4 for the year 2017, divided into 4 periods: January, February, March (a) April, May, June (b), July, August, September (c), and October, November, December (d).