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Experimental Section

Materials
Unless otherwise mentioned, materials were obtained from commercial suppliers and used without further

purification.

Characterization

Fourier-transform infrared (FTIR) spectra were recorded with a Bruker Tensor-27 infrared spectrophotometer with
a disc of KBr from 4000 to 400 cm!. Solid-state 13C CP/MAS NMR spectra were carried out on a Bruker Avance-
500 NMR spectrometer operating under a magnetic field strength of 9.4 T. The resonance frequency at this field
strength was 125 MHz for 1*C NMR. A chemagnetics of 5 mm triple-resonance MAS probe was used to acquire 13C
spectra. The 13C chemical shifts were referenced externally via the resonance of tetramethylsilane (TMS) of 0 ppm.
Elemental analysis was performed by using an Elementarvario EL III elemental analyzer. Powder X-ray diffraction
(PXRD) were performed on a Riguku D/MAX 2550 diffractometer using Cu-Ka radiation at 40 kV and 200 mA
with a scan rate of 10° min!. Thermal gravimetric analysis (TGA) was measured on a Mettler-Toledo TGA/DSC
TGA system with heating rate of 10 °C min’! from room temperature to 800 °C in nitrogen atmosphere. Field-
emission scanning electron microscopy (FE-SEM) experiments were recorded with a HITACHI S4800 spectrometer.
UV-vis absorption spectra were collected on a TU-1901 double beam UV-vis spectrophotometer. The high-
resolution transmission electron microscopy (HR-TEM) experiments were characterized by using a JEM 2100
electron microscope (JEOL, Japan) with an acceleration voltage of 200 kV. The luminescence excitation spectra and
emission spectra were measured on Hitachi F-4500 fluorescence spectrophotometer equipment. Uv-vis
absqqqorption spectra were collected on an Agilent Cary 5000 UV-Vis-NIR Spectrophotometer. XPS analysis of
the solid samples was performed using Thermofisher ESCALAB 250 spectrometer with monochromatized Al Ka
radiation under ultrahigh vacuum (<10-7 Pa). The binding energies were calibrated using Cls peak (284.6 eV) as a
reference. UPS measurements were performed using Thermo Escalab 250XI PHIS000 Versa Probe III instrument
with an unfiltered Hel (21.22 eV) gas discharge lamp and a gold (Au) calibration. A typical UPS spectrum usually
has two intersections with baseline, from which the width of binding energy (AE) is determined. The width value of
He I UPS spectra (21.22 eV) is used as the standard. Nitrogen sorption isotherm measurements were performed by
using a Micro Meritics surface area and pore size analyzer. The samples were degassed at 150 °C for 12 h prior to
measurement. A sample of ca. 100 mg and UHP-grade nitrogen (99.999%) gas source were used in the nitrogen
sorption measurements and collected with a Quantachrome Quadrasorb apparatus. Brunauer-Emmet-Teller (BET)
surface areas were evaluated over a P/P, range from 0.01 to 0.20. Nonlocal density functional theory (NL-DFT)
pore-size distributions were confirmed by using the carbon/slit-cylindrical pore mode of the Quadrawin software.
(Surface area calculated from N, adsorption isotherm using the BET method; Microporous surface area calculated
from N, adsorption isotherm using t-plot method; Total pore volume calculated at P/P, = 0.99; Micropore volume
derived using the t-plot method.) Radicals (-O,~ and OH-) were detected by electron paramagnetic resonance (EPR,
EMX PLUS, Bruker, Germany) spectroscopy with 100 mM of DMPO as the spin trapping agent. The intermediates
of dye degradation were analyzed by high performance liquid chromatography mass spectrometry (HPLC-MS)
(Thermo Scientific Q Exactive) with a C18 column (2.1 mm x 100 mm, 2.6 pm). The intermediates of RB and MB
were measured in positive electrospray ionization (ESI) mode, while the intermediates of CR and MO were analyzed
in negative ESI mode. The injection volume was 10 pL. The column temperature was 25°C. The flow rate was 0.2
mL/min. The mobile phase was consisted by A (acetonitrile) and B (0.1% formic acid-water); moreover, gradient
elution was used in following method.

RB: 20%A-80%B (0-12 min), 75%A-25%B (12-15 min), and 20%A-80%B (15-23 min).



MB: 18%A-82%B (0-12 min), 72%A-28%B (12-15 min), and 18%A-82%B (15-23 min).

CR: 5%A-95%B (0-12 min), 80%A-20%B (12-14 min), and 5%A-95% (14-20 min).

MO: 5%A-95%B (0-10 min), 70%A-30%B (10-14 min), and 5%A-95% (14-20 min).

Photoelectrochemical measurements

The transient photocurrent response and electrochemical impedance measurements were performed using a
CHI760E electrochemical workstation with a standard three-electrode system. The working electrode was prepared
as follows: 10 mg CTFs was dispersed in a mixture of 5 % Nafion solution (50 pL) and isopropanol (1 mL) and
ultrasonicated for 30 min to form a uniform suspension. Then, 150 pL of suspension was dip-coated on the 1 cm x
0.8 cm ITO glass and dried overnight at room temperature. The as-prepared electrode, platinum electrode and
Ag/AgCl electrode were acted as working electrode, counter electrode, and reference electrode, respectively. The

electrolyte was 0.5 M Na,SO, aqueous solution, and the light source is a 300 W Xe-lamp.

General Synthesis Procedure for TAs

All trimerization reactions were carried out in a dried three-necked flask equipped with a magnetic stirrer, using
chloroform as the solvent. The molar ratio of trifluoromethanesulfonic acid (CF;SO;H) to the cyano group was set
to 3:1. For the products 2Phy;,-TA and 2Th,;-TA, the monomer ratios of 4-bromobenzonitrile and 5-
bromothiophene-2-carbonitrile were 2: 1 and 2: 1, respectively.

Synthesis of 3Ph-TA. A dried 50 mL flask was equipped with a magnetic stirrer and dry chloroform (20 mL) under
argon. After the solvent had been cooled to 0 °C in an ice bath, CF;SOsH (4.50 g, 30 mmol) was added carefully
under vigorous stirring. Then, 4-bromobenzonitrile (1.82 g, 10 mmol) was added in small portions. The reaction
mixture was stirred at 0 °C for 1 h and afterward for an additional 36 h at room temperature. After 50 mL of water
had been added, a white precipitate was formed. Being stirred for an additional 3 h, the suspension was filtered,
washed successively with water (50 mL), ethanol (50 mL) and diethyl ether (50 mL). The samples were obtained as
a white powder and dried under vacuum at 75 °C overnight (yield: 1.11 g, 61 %).

Synthesis of 2Ph,,;-TA. 4-bromobenzonitrile (1.82 g, 10 mmol), 5-bromothiophene-2-carbonitrile (0.94 g, 5 mmol),
and CF;SO;H (6.75 g, 45 mmol) were used in this cyclotrimerization. 2Ph,,;,-TA was obtained as an off-white
powder (yield: 1.60 g, 58 %).

Synthesis of 2Th,,;-TA. 4-bromobenzonitrile (0.91 g, 5 mmol), 5-bromothiophene-2-carbonitrile (1.88 g, 10 mmol),
and CF;SOsH (6.75 g, 45 mmol) were used in this cyclotrimerization. 2Th,,;-TA was obtained as a pale-yellow
powder (yield: 1.48 g, 53 %).

Synthesis of 3Th-TA. 5-bromothiophene-2-carbonitrile (1.88 g, 10 mmol), and CF;SOsH (4.50 g, 30 mmol) were
used in this cyclotrimerization. 3Th-TA was obtained as a pale-yellow powder (yield: 0.88 g, 47 %).

Synthesis of PTCTFs

Synthesis of 3Ph-CTF. The synthesis of 3Ph-CTF gives a representative example for the experimental procedure.
All Suzuki reactions were carried out in a three-necked flask equipped with a magnetic stirrer and under N,
atmosphere. A 100 mL oven-dried flask was charged with 3Ph-TA (1.09 g, 2 mmol), Pd[P(C¢Hs);]4 (0.28 g, 0.24
mmol), and DMF (45 mL) under N, atmosphere. After stirring evenly, K,CO; (2.0 M in water, 10 mL) and 1,4-
phenylenebisboronic acid (0.74 g, 4.5 mmol, in 10 mL methanol) were then added. The mixture was slowly heated
to 135 °C and stirred for 20 h under reflux. At the end of the reaction, the suspension reaction system was cooled to
room temperature and poured into water (about 200 mL). After that, the product was precipitated, filtered, and
sequentially washed with successive water, dichloromethane, and methanol. After the operations, 3Ph-CTF was
afforded as a gray powder (yield: 0.71 g, 84 %).

Synthesis of 2Ph,,;,~CTF. 2Ph,;;-TA (1.10 g), Pd[P(C¢Hs)3]4 (0.28 g, 0.24 mmol), DMF (45 mL), K,CO;5 (2.0 M in

water, 10 mL) and 1,4-phenylenebisboronic acid (0.74 g, 4.5 mmol, in 10 mL methanol) were used in this



polymerization. 2Ph,,;x-CTF was obtained as a yellow powder (yield: 0.74 g, 86%).

Synthesis of 2Th,,;,~CTF. 2Th,x-TA (1.12 g), Pd[P(C¢Hs);]4 (0.28 g, 0.24 mmol), DMF (45 mL), K,CO;5 (2.0 M in
water, 10 mL) and 1,4-phenylenebisboronic acid (0.74 g, 4.5 mmol, in 10 mL methanol) were used in this
polymerization. 2Th,;-CTF was obtained as a yellow-green powder (yield: 0.70 g, 81%).

Synthesis of 3Th-CTF. 3Th-TA (1.13 g), Pd[P(C¢Hs)3]4 (0.28 g, 0.24 mmol), DMF (45 mL), K,CO; (2.0 M in water,
10 mL) and 1,4-phenylenebisboronic acid (0.74 g, 4.5 mmol, in 10 mL methanol) were used in this polymerization.

3Th-CTF was obtained as a brown-yellow powder (yield: 0.77 g, 88%).

Photodegradation Experiments

All the photodegradation experiments were carried out in 15 ml of dye solutions with different concentrations at
room temperature, the concentrations of PTCTFs being the same, ie 0.2 g L-!. The dye solutions were prepared by
dissolving the corresponding dyes into deionized water. A UV-vis spectrophotometer was employed to record the
changes of the intensitiy of the maximum absorption wavelength of RB (554 nm), CR (497 nm), MB (665 nm), and
MO (464 nm) before and after the photodegradation experiments.

At the same time, to evaluate the degradation ability more accurately and exclude the influence of adsorption, we
further conducted desorption experiments for each set of dye degradation experiments and analyzed the desorbed
substances. After degrading and adsorbing for a certain period, PTCTFs were separated from the solutions by
filtration, and then washed repeatedly many times with methanol until the detergent was colorless. The filtrates were
then mixed, transferred to a volumetric flask, and diluted with methanol to volume. Similarly, UV-vis
spectrophotometer was used to detect the concentrations of the desorbed dyes. In methanol, the maximum absorption
wavelengths of RB, CR, MB, and MO are 545, 497, 663 and 421 nm. Before the photodegradation experiments, the
relationships between absorbance and concentration of four dyes both in water and methanol were established by
using UV-vis spectrophotometer. All photocatalytic experiments were quantitatively analyzed by the above steps.
Photocatalytic activity measurements. The photocatalytic activity of PTCTFs was tested under ultraviolet light
irradiation in the laboratory. Due to the difference in absorptivity, the concentration of RB and CR aqueous solutions
prepared for degradation experiment is 20 ppm, while that of MB and MO is 10 ppm.

Degradation experiments under natural light. Degradation experiments under natural light were stirred for two
days. The controlled experiments were performed in the dark, other conditions being equal. The static degradation
experiments of four dyes with gradient concentrations were carried out by exposure to outdoor natural light, and
recorded regularly with photos.

Mechanism exploration experiments. The mechanism exploration experiments were carried out according to the
above steps with the addition of scavenger (1 mmol L!).

Determination of degradation intermediates. Typically, 3Ph-CTF (3 mg) were dispersed into dye solution (15 mL),
and the mixture was irradiated under a visible light (300 W Xe lamp). 4 mL of the solution was collected at selected
irradiation times and centrifuged to obtain clear solutions. HPLC-MS was used to analyze the intermediate products
of dye degradation. The concentration of the dye solution and the different intervals are shown below.

RB (20 ppm): 5 min, 15 min, 45 min.

MB (10 ppm): 25 min, 60 min, 16 min.

CR (20 ppm): 5 min, 15 min, 40 min.

MO (10 ppm): 40 min, 70 min, 160 min.

Photocatalytic regeneration experiments. Conditions: C¢=20 ppm, V=10 mL, Mprcrr=2 mg, time = 1 h.

After the photodegradation experiment, the PTCTFs were filtered and collected, wished several times with hot
methanol. Then the regenerated materials were dried under vacuum for 10 h at 80 °C and used directly in the next

cycle.



Kubelka-Munk equation: F(R,,)) = [(1-R.,)*/(2R,,)]

ahv=A (hv-Eg)"2..........ccocooiinii. 4

where a, hv, and A represent the absorption coefficient, the discrete photon energy, and the proportionality constant,
respectively, and n depends on the form of the optical transition in the photocatalyst (with direct transitions n = 1,

indirect transitions n = 4).

Computational methods

The density-functional-theory (DFT) calculations! were carried out with the Vienna A4b initio Simulation Package?
to further understand the photocatalytic properties of the CTFs. The projector augmented wave pseudo-potentials
method? and the generalized gradient approximation in the form of Perdew—Burke—Ernzerhof (PBE)* were applied.
The cutoff energy for the plane-wave basis was set to 450 eV. The convergence criteria for energy and force were
setto 10 eV and 0.01 eV/A, respectively. The structures were fully relaxed with the I'-centered Monkhorst-Pack®

k-point sampling which was set as 2x2x6.



Table S1. Elemental analysis of TAs and PTCTFs.

Chemical formula or
Sample Theoretical molar ratio of N (%) C (%) H (%) S (%)
Si: O: C: H: N: S

Exp % 7.52 46.27 2.14 0.10
3Ph-TA C21H12BT3N3
Theo % 7.70 46.19 2.22 0
Exp % 7.44 41.52 1.87 5.73
2th1X-TA C]ngoBr3N3S
Theo % 7.61 41.34 1.83 5.81
Exp % 7.41 36.32 1.47 11.98
2Thmlx-TA C17H8BT3N3S2
Theo % 7.53 36.58 1.44 11.49
Exp % 7.29 32.34 1.25 16.65
3Th-TA C15H6BI'3N383
Theo % 7.45 31.94 1.07 17.05
Exp % 8.66 80.58 4.67 0
3Ph-CTF 2:3:18:12:2:0
Theo % 9.99 85.69 431 0
Exp % 8.23 75.55 4.40 5.99
2Ph,,;x-CTF 6:9:50:32:6:2
Theo % 9.85 78.85 3.78 7.52
Exp % 8.21 69.59 3.79 13.07
2Thpy-CTF 6:9:46:28:6:4
Theo % 9.72 72.20 3.26 14.82
Exp % 8.45 64.19 3.13 19.38
3Th-CTF 2:3:14:8:2:2
Theo % 9.58 59.99 2.52 20.02
Exp % = Experimental Value
Theo % = Theoretical Value
Table S2. Porosity data of PTCTFs.
BET Surface Area Mean Pore Diameter Total Pore Volume
Sample
(m? g) (nm) (m* g
3Ph-CTF 34 21.7 0.18
2Ph,,;-CTF 60 11.3 0.17
2Th-CTF 68 12.6 0.21

3Th-CTF 46 24.8 0.28




Table S3. Comparison of the photocatalytic performances of different related catalysts for degradation of CR, RB,
MB, and MO.

Removal
Photocatalyst and their Concentration Concentration of ty2 (min)
Dye Efficiency Energy source Ref.
(mg mL") the dye or k (min™')
1) (min)
1.25 7.5%10° M
Ag;PO, CR 91 % (18) visible light 6
(pH=9) (52 ppm)
1.25 7.5%10° M
Ag;PO, MO 92 % (42) visible light ¢
(pH=9) (25 ppm)
0.40
[Cuy(bix)(sdc)a]n MO 10 ppm 85 % (300) visible light 7
(30% H,0,)
0.40
[Cuy(bix)(sdc),], MB 10 ppm 91 % (90) visible light 7
(30% H,0,)
0.40
[Cuy(bix)(sdc), ], RB 10 ppm 84 % (180) visible light 7
(30% H,0,)
ZnAlLO, 1.00 CR 15 ppm 0.033 min! 98 % (80) mercury lamp 8
ZnAlLO, 1.00 MO 15 ppm 0.032 min™! 97 % (90) mercury lamp 8
Dye wastewater: 3.01 min
Graphene-Cu-Co;0, 0.30 CR 99 % (15) visible light o
total nitrogen = 45 0.23 min™!
mg/L, total
phosphorus = 2.5
mg/L, and color = 1.71 min
Graphene-Cu-Co;0, 0.30 MO 99 % (15) visible light ?
1000 unit 0.41 min™!
MNP@TiO,/WO; 5.00 CR 50 ppm 0.049 min! 99 % (60) solar light 1
MNP@TiO,/WO; 5.00 MB 50 ppm 0.1677 h! 99 % (12 h) solar light 10
MNP@TiO,/WO; 5.00 MO 10 ppm 0.1557 h! 99 % (11 h) solar light 10
2.50 MO 25 ppm 75 % (70) A 250-W 1
POD
medium-pressure
(HC1 0.5 mol/L)
2.50 MB 25 ppm 65 % (300) Hg lamp n
Ni doped CdS 0.60 MB 20 ppm 1.18 min™! 91 % (75) sunlight 12
nanoparticles 0.60 MO 20 ppm 1.22 min™! 94 % (75) sunlight 12
6.67x107" M artificial solar
ACN2 1.25 MB 0.11 min™ 93 % (25) 13
(0.2 ppm) light
6.67x107" M artificial solar
ACN2 1.25 MO 0.07 min™! 84 % (25) 13
(0.2 ppm) light
Cu,0/MoS,-12 0.20 MO 20 ppm 0.084 min™! 90 % (30) visible light 1
11 min
POP-1 1.00 RB 10 ppm >99 (45) visible light 15
0.067 min™!
18 min
POP-1 1.00 MB 10 ppm >99 % (30) visible light 15
0.044 min™!




28 min

POP-1 1.00 CR 20 ppm 90 % (45) visible light 15
0.022 min™!
71 min
POP-1 1.00 MO 20 ppm 91 % (150) visible light 15
0.007 min™!
16 min
POP-2 1.00 RB 10 ppm 90 % (120) visible light 15
0.039 min™!
28 min
POP-2 1.00 MB 10 ppm 96 % (75) visible light 15
0.025 min™!
22 min
POP-2 1.00 CR 20 ppm 67 % (75) visible light 15
0.032 min™'
POP-2 1.00 MO 20 ppm N.A. 2 % (160) visible light 15
1.00
5.0x10°M 459 min
COP-NT (H,0,: 0.10 M, MO 67 % (12 h) visible light 16
(16.4 ppm) 0.002 min!
pH=7)
6.8 min This
3Ph-CTF 0.20 CR 20 98 % (30) UV light
0.115 min"! work
9.7 min This
3Ph-CTF 0.20 RB 20 >99 % (30) UV light
0.086 min! work
26.0 min This
3Ph-CTF 0.20 MB 10 95 % (100) UV light
0.030 min™! work
43.0 min This
3Ph-CTF 0.20 MO 10 93 % (120) UV light
0.024 min™! work
7.4 min This
3Th-CTF 0.20 CR 20 91 % (30) UV light
0.074 min™! work
13.3 min This
3Th-CTF 0.20 RB 20 95 % (45) UV light
0.063 min! work
148.5 min This
3Th-CTF 0.20 MB 10 75 % (300) UV light
0.004 min! work
134.3 min This
3Th-CTF 0.20 MO 10 83 % (260) UV light
0.006 min! work




Table S4. Physical and chemical properties of dyes.
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Table SS5. Detected intermediates of RB degradation by 3Ph-CTF using HPLC-MS.

Compounds Chemical structure Molecular formula | Molecular weight m/z
O COOH
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AN O o O NS
A S
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N O o ‘ﬁ’\
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N O 0 ”ﬁ’\
) H
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AN O o ‘ﬁ’\
H pe H
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N O o O FiH,
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HN O o O E/\
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O (o) O ﬁus
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OH NH,*
o
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Fig. S10. The MS spectra of the photodegradation products of CR at different photodegradation times: (a) 5 min, (b)
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Table S6. Detected intermediates of CR degradation by 3Ph-CTF using HPLC-MS.

Compounds Chemical structure Molecular formula m/z
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NH, N
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Fig. S11. The MS spectra of the photodegradation products of MB at different photodegradation times: (a) 25 min,

(b) 60 min, and (¢) 160 min.




Table S7. Detected intermediates of MB degradation by 3Ph-CTF using HPLC-MS.

Compounds Chemical structure Molecular formula m/z
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Fig. S12. The MS spectra of the photodegradation products of MO at different photodegradation times: (a) 40 min,

(b) 70 min, and (c) 160 min.



Table S8. Detected intermediates of MO degradation by 3Ph-CTF using HPLC-MS.

Compounds Chemical structure Molecular formula m/z
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Scheme S1. Degradation pathway of RB by 3Ph-CTF based on degradation intermediates detected by LC-MS.
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