Supporting Information

Construction of Sol-gel derived Ternary CuZn/FeO_x Nanostructure for Catalytic Transfer Hydrogenation of Furfural

Tao Wang, Yuan Cheng, Hongyu Niu, Shaojie Li, Jingjie Luo,* Changhai Liang*

Laboratory of Advanced Materials & Catalytic Engineering (AMCE), School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China

*Corresponding author. Tel/Fax: +86-411-84986353;

E-mail: jingjie.luo@dlut.edu.cn (J. Luo) & changhai@dlut.edu.cn (C. Liang)

Table contents

Figure S1. N₂ adsorption–desorption isotherms and pore size distributions of Cu/FeO_x(280) and CuZn/FeO_x(280) catalysts by sol-gel and CuZn/FeO_x(DP) by deposition-precipitation. Figure S2. H₂-TPR profiles of precursors after calcined at 500 °C without further thermal

reduction.

Figure S3. Catalytic performance of $CuZn/FeO_x(280)$ for the CTH process of FUR as a function of reaction temperature.

Figure S4. HAADF-STEM elemental mappings of CuZn/FeO_x(250).

Figure S5. TEM images of CuZn/FeO_x(280) catalyst.

Figure S6. TEM images and HAADF-STEM elemental mappings of CuZn/FeO_x(350).

Figure S7. TEM images and HAADF-STEM elemental mappings of $CuZn/FeO_x(DP)$ synthesized by deposition-precipitation.

Figure S8. XPS spectra of Cu 2p core level of the Cu/FeO_x and CuZn/FeO_x catalysts.

Figure S9. XPS spectra of Zn 2p core level of (a) Cu/FeO_x and CuZn/FeO_x by sol-gel methods, and (b) CuZn/FeO_x catalysts synthesized by conventional methods pre-reduced at 280 °C.

Figure S10. XPS spectra of Cu 2p core level of the CuZn/FeO_x catalysts by different methods.

Figure S11. Cu LMM XPS spectra of the CuZn/FeO_x catalysts by different methods.

Figure S12. XPS spectra of Fe 2p core level of the CuZn/FeO_x catalysts by different methods.

Figure S13. The reaction rates by different catalysts changed with the (a) surface percentage of Cu⁰, (b) percentage of Cu⁺, and (c) percentage of Cu²⁺.

Figure S14. The CTH reaction mechanism of FUR using CuZn/FeO_x catalysts.

Figure S15. FUR conversion and product distribution during cycle reaction by $CuZn/FeO_x(280)$.

Figure S16. TEM images and the HAADF-STEM elemental mappings of $CuZn/FeO_x(280)$ after reaction.

Table S1. Structure and surface information of Cu catalysts according to XRD and XPS data.

Table S2. Surface acid sites in terms of the NH₃ desorption amount based on the NH₃-TPD profiles.

Table S3. Comparison of specific rates in the current work and the reported literature.

Figure S1. N₂ adsorption–desorption isotherms and pore size distributions of Cu/FeO_x(280) and CuZn/FeO_x(280) catalysts by sol-gel and CuZn/FeO_x(DP) by deposition-precipitation.

Figure S2. H₂-TPR profiles of precursors after calcined at 500 °C without further thermal reduction: sol-gel derived Cu/FeO_x-sol and CuZn/FeO_x-sol precursors; DP derived Cu/FeO_x-DP precursor.

Figure S3. Catalytic performance of CuZn/FeO_x(280) for the CTH process of FUR as a function of reaction temperature. Reaction conditions: molar ratio of furfural/isopropanol = 0.02, 200 mg of catalyst, 4 h, 0.1 MPa N₂. FUR: furfural, 2-MF: 2-methylfuran, FAL: furfuryl alcohol. Other products including condensation and coupling products with minor amount of γ -valerolactone.

Figure S4. HAADF-STEM elemental mappings of $CuZn/FeO_x(250)$.

Figure S5. TEM images of CuZn/FeO_x(280) catalyst.

Figure S6. TEM images and HAADF-STEM elemental mappings of $CuZn/FeO_x(350)$.

Figure S7. TEM images and HAADF-STEM elemental mappings of $CuZn/FeO_x(DP)$ synthesized by deposition-precipitation.

Figure S8. XPS spectra of_Cu 2p core level of the Cu/FeO_x and CuZn/FeO_x catalysts.

Figure S9. XPS spectra of Zn 2*p* core level of (a) Cu/FeO_x and CuZn/FeO_x by sol-gel methods, and (b) CuZn/FeO_x catalysts by conventional methods pre-reduced at 280 °C.

Figure S10. XPS spectra of Cu 2p core level of the CuZn/FeO_x catalysts by different methods.

Figure S11. Cu LMM XPS spectra of the CuZn/FeO_x catalysts by different methods.

Figure S12. XPS spectra of Fe 2p core level of the CuZn/FeO_x catalysts by different methods.

Figure S13. The reaction rates by different catalysts changed with the (a) surface percentage of Cu^0 , (b) percentage of Cu^+ , and (c) percentage of Cu^{2+} . There was no clear tendency between the reaction rates and the percentages of surface copper species. The Cu/M_{total} was standardized by the atomic ratio of copper species in the total metal elements (Cu+Fe+Zn).

Figure S14. The CTH reaction mechanism of FUR using $CuZn/FeO_x$ catalysts. The origin ball, purple ball, and red ball suggested the Cu, Zn and O atoms.

Figure S15. FUR conversion and product distribution during cycle reaction by $CuZn/FeO_x(280)$. Reaction condition: molar ratio of furfural/isopropanol = 0.02, 100 mg of catalyst, 180 °C for 4 h, 0.1 MPa N₂. FUR: furfural, FAL: furfuryl alcohol.

Figure S16. TEM images and the HAADF-STEM elemental mappings of $CuZn/FeO_x(280)$ after reaction.

Sample	Method	Pre-reduction		a Surface composition (%)			
Sample		T (°C)	$d_{Cu(111)}^{a}$ –	Cu ⁰	$(Cu^0+Cu^+)/Cu^{2+}$	Cu ⁺ / Cu ⁰	
Cu/FeO _x (280)		280	18.4	37.2	3.51	1.05	
CuZn/FeO _x (200)		200	8.3	36.3	2.46	0.95	
CuZn/FeO _x (250)	Sol-gel	250	9.6	42.4	3.45	0.76	
CuZn/FeO _x (280)		280	11.6	45.9	4.63	0.79	
CuZn/FeO _x (300)		300	15.7	45.4	4.35	0.79	
CuZn/FeO _x (350)		350	26.6	43.9	6.65	0.71	
CuZn/FeO _x (CP)	Co-precipitation		18.3	24.8	0.63	0.56	
CuZn/FeO _x (DP)	Deposition- precipitation	280	21.7	48.7	4.84	0.70	
CuZn/FeO _x (IM)	Impregnation		19.8	44.4	3.19	0.72	

Table S1. Structure and surface information of Cu catalysts according to XRD and XPS data.

^a Average sizes of Cu particles estimated by Scherrer equation based on the peak width at half height of Cu (111) diffraction peaks.

Sample		NH ₃ desorption (NH ₃ mmol/g)				
Bampie	Weak	Medium	Strong	Total		
Cu/FeO _x (280)	0.017	0.008	0.005	0.030		
CuZn/FeO _x (250)	0.019	0.010	0.030	0.059		
CuZn/FeO _x (280)	0.014	0.011	0.011	0.036		
CuZn/FeO _x (300)	0.013	0.012	0.004	0.029		
CuZn/FeO _x (350)	0.013	0.009	0.005	0.027		

Table S2. Surface acid sites in terms of the NH₃ desorption amount based on the NH₃-TPD profiles.

Catalyst	T (°C)	2-MF yield	Specific rate (µmol _{2 - MF} /g _M /s)	Ref.
CuZn/FeO _x (280)	190	66.8	6.2	This work
CuZn/FeO _x (280)	210	92.0	8.6	This work
Cu/FeO _x -C5H	220	80.5	2.2	[1]
NiCuAl	200	41.1	1.5	[2]
10Cu3Pd/ZrO ₂	220	61.9	0.4	[3]
Cu _{2.5} Zn-Al-600	180	72.0	2.1	[4]
5Cu3Re/Al ₂ O ₃	220	94.0	3.4	[5]
10%Ni-10%Cu	210	73.6	4.6	[6]
Cu/SiO ₂ -HT	220	90.0	12.8ª	[7]
Ru/C	180	61.0	0.3	[8]
Ru ₄ /NiFe ₂ O ₄	200	79.0	0.8	[9]

Table S3. Comparison of specific rates in the current work and the reported literature.

^a Initial N₂ pressure was kept at 2.1 MPa.

References

[1] J.J. Luo, Y. Cheng, H.Y. Niu, T. Wang, C.H. Liang, J Catal, 413 (2022) 575-587.

[2] M. Kalong, P. Hongmanorom, S. Ratchahat, W. Koo-amornpattana, K. Faungnawakij, S. Assabumrungrat, A. Srifa, S. Kawi, Fuel Process Technol, 214 (2021) 106721.

[3] X. Chang, A.F. Liu, B. Cai, J.Y. Luo, H. Pan, Y.B. Huang, Chemsuschem, 9 (2016) 3330-3337.

[4] H.Y. Niu, J.J. Luo, C. Li, B.W. Wang, C.H. Liang, Industrial & Engineering Chemistry Research, 58 (2019) 6298-6308.

[5] K. Zhou, J.X. Chen, Y.J. Cheng, Z.T. Chen, S.M. Kang, Z.D. Cai, Y.J. Xu, J.J. Wei, ACS Sustainable Chemistry & Engineering, 8 (2020) 16624-16636.

[6] Z. Fu, Z. Wang, W. Lin, W. Song, S. Li, Applied Catalysis A: General, 547 (2017) 248-255.

[7] B. Li, L. Li, H. Sun, C. Zhao, ACS Sustainable Chemistry & Engineering, 6 (2018) 12096-12103.

[8] M.J. Gilkey, P. Panagiotopoulou, A.V. Mironenko, G.R. Jenness, D.G. Vlachos, B.J. Xu, Acs Catal, 5 (2015) 3988-3994.

[9] B. Wang, C. Li, B. He, J. Qi, C. Liang, Journal of Energy Chemistry, 26 (2017) 799-807.