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Figure S1. N2 adsorption–desorption isotherms and pore size distributions of Cu/FeOx(280) 

and CuZn/FeOx(280) catalysts by sol-gel and CuZn/FeOx(DP) by deposition-precipitation.
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Figure S2. H2-TPR profiles of precursors after calcined at 500 °C without further thermal 

reduction: sol-gel derived Cu/FeOx-sol and CuZn/FeOx-sol precursors; DP derived 

Cu/FeOx-DP precursor.
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Figure S3. Catalytic performance of CuZn/FeOx(280) for the CTH process of FUR as a 

function of reaction temperature. Reaction conditions: molar ratio of furfural/isopropanol = 

0.02, 200 mg of catalyst, 4 h, 0.1 MPa N2. FUR: furfural, 2-MF: 2-methylfuran, FAL: 

furfuryl alcohol. Other products including condensation and coupling products with minor 

amount of γ-valerolactone.



7

Figure S4. HAADF-STEM elemental mappings of CuZn/FeOx(250).
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Figure S5. TEM images of CuZn/FeOx(280) catalyst.
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Figure S6. TEM images and HAADF-STEM elemental mappings of CuZn/FeOx(350).



10

Figure S7. TEM images and HAADF-STEM elemental mappings of CuZn/FeOx(DP) 

synthesized by deposition-precipitation.
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Figure S8. XPS spectra of Cu 2p core level of the Cu/FeOx and CuZn/FeOx catalysts.
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Figure S9. XPS spectra of Zn 2p core level of (a) Cu/FeOx and CuZn/FeOx by sol-gel 

methods, and (b) CuZn/FeOx catalysts by conventional methods pre-reduced at 280 °C.
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Figure S10. XPS spectra of Cu 2p core level of the CuZn/FeOx catalysts by different 

methods.
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Figure S11. Cu LMM XPS spectra of the CuZn/FeOx catalysts by different methods.
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Figure S12. XPS spectra of Fe 2p core level of the CuZn/FeOx catalysts by different 

methods.
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Figure S13. The reaction rates by different catalysts changed with the (a) surface percentage 

of Cu0, (b) percentage of Cu+, and (c) percentage of Cu2+. There was no clear tendency 

between the reaction rates and the percentages of surface copper species. The Cu/Mtotal was 

standardized by the atomic ratio of copper species in the total metal elements (Cu+Fe+Zn).
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Figure S14. The CTH reaction mechanism of FUR using CuZn/FeOx catalysts. The origin 

ball, purple ball, and red ball suggested the Cu, Zn and O atoms.
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Figure S15. FUR conversion and product distribution during cycle reaction by 

CuZn/FeOx(280). Reaction condition: molar ratio of furfural/isopropanol = 0.02, 100 mg of 

catalyst, 180 °C for 4 h, 0.1 MPa N2. FUR: furfural, FAL: furfuryl alcohol.
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Figure S16. TEM images and the HAADF-STEM elemental mappings of CuZn/FeOx(280) 

after reaction.
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Table S1. Structure and surface information of Cu catalysts according to XRD and XPS 

data.

Surface composition (%)
Sample Method

Pre-reduction 

T (°C)
dCu(111)

a

Cu0 (Cu0+Cu+)/Cu2+ Cu+/ Cu0

Cu/FeOx(280) 280 18.4 37.2 3.51 1.05

CuZn/FeOx(200) 200 8.3 36.3 2.46 0.95

CuZn/FeOx(250) 250 9.6 42.4 3.45 0.76

CuZn/FeOx(280) 280 11.6 45.9 4.63 0.79

CuZn/FeOx(300) 300 15.7 45.4 4.35 0.79

CuZn/FeOx(350)

Sol-gel

350 26.6 43.9 6.65 0.71

CuZn/FeOx(CP) Co-precipitation 18.3 24.8 0.63 0.56

CuZn/FeOx(DP) Deposition-
precipitation

21.7 48.7 4.84 0.70

CuZn/FeOx(IM) Impregnation

280

19.8 44.4 3.19 0.72

a Average sizes of Cu particles estimated by Scherrer equation based on the peak width at half height 
of Cu (111) diffraction peaks.
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Table S2. Surface acid sites in terms of the NH3 desorption amount based on the NH3-TPD 

profiles. 

 NH3 desorption (NH3 mmol/g)
Sample

Weak Medium Strong Total
Cu/FeOx(280) 0.017 0.008 0.005 0.030
CuZn/FeOx(250) 0.019 0.010 0.030 0.059
CuZn/FeOx(280) 0.014 0.011 0.011 0.036
CuZn/FeOx(300) 0.013 0.012 0.004 0.029
CuZn/FeOx(350) 0.013 0.009 0.005 0.027
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Table S3. Comparison of specific rates in the current work and the reported literature.

Catalyst T (oC) 2-MF yield

Specific rate 

(𝜇𝑚𝑜𝑙2 ‒ 𝑀𝐹/𝑔𝑀/𝑠

)

Ref.

CuZn/FeOx(280) 190 66.8 6.2 This work

CuZn/FeOx(280) 210 92.0 8.6 This work

Cu/FeOx-C5H 220 80.5 2.2 [1]

NiCuAl 200 41.1 1.5 [2]

10Cu3Pd/ZrO2 220 61.9 0.4 [3]

Cu2.5Zn−Al-600 180 72.0 2.1 [4]

5Cu3Re/Al2O3 220 94.0 3.4 [5]

10%Ni-10%Cu 210 73.6 4.6 [6]

Cu/SiO2-HT 220 90.0 12.8a [7]

Ru/C 180 61.0 0.3 [8]

Ru4/NiFe2O4 200 79.0 0.8 [9]

a Initial N2 pressure was kept at 2.1 MPa.

References

[1] J.J. Luo, Y. Cheng, H.Y. Niu, T. Wang, C.H. Liang, J Catal, 413 (2022) 575-587.
[2] M. Kalong, P. Hongmanorom, S. Ratchahat, W. Koo-amornpattana, K. Faungnawakij, S. 

Assabumrungrat, A. Srifa, S. Kawi, Fuel Process Technol, 214 (2021) 106721.

[3] X. Chang, A.F. Liu, B. Cai, J.Y. Luo, H. Pan, Y.B. Huang, Chemsuschem, 9 (2016) 3330-3337.

[4] H.Y. Niu, J.J. Luo, C. Li, B.W. Wang, C.H. Liang, Industrial & Engineering Chemistry Research, 

58 (2019) 6298-6308.

[5] K. Zhou, J.X. Chen, Y.J. Cheng, Z.T. Chen, S.M. Kang, Z.D. Cai, Y.J. Xu, J.J. Wei, ACS 

Sustainable Chemistry & Engineering, 8 (2020) 16624-16636.

[6] Z. Fu, Z. Wang, W. Lin, W. Song, S. Li, Applied Catalysis A: General, 547 (2017) 248-255.

[7] B. Li, L. Li, H. Sun, C. Zhao, ACS Sustainable Chemistry & Engineering, 6 (2018) 12096-12103.

[8] M.J. Gilkey, P. Panagiotopoulou, A.V. Mironenko, G.R. Jenness, D.G. Vlachos, B.J. Xu, Acs 

Catal, 5 (2015) 3988-3994.

[9] B. Wang, C. Li, B. He, J. Qi, C. Liang, Journal of Energy Chemistry, 26 (2017) 799-807.


