Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Conjugated Polymer Coupled with Graphitic Carbon Nitride for Boosting Photocatalytic Hydrogen Generation under Visible Light

Xiaoyi Zhu, Meili Guan, Rongcai Gong, Xuezhong Gong,* Chunhui Dai and Jianguo Tang*

Figure S1. SEM image of synthesized C₆-FDTP conjugated polymer. 1H NMR (400 MHz, CDCl3): δ 8.19-8.13 (m, 1H), 7.99-7.86 (m, 3H), 7.76-7.57 (m, 2H), 2.14 (d, 3H), 1.26 (m, 7H), 0.89-0.71 (m, 6H). GPC results: Mn = 4810; Mw = 7310; PDI = 1.52. Anal. Calcd for C6-s (C43H52O2S)n: C, 81.60; H, 8.28; S, 5.07; Pd, 0.05%. Found: C, 78.11; H, 7.67; S, 4.18.

Figure S2. (a) XRD, (b)FTIR and (c)XPS of used C6s/CN-5 after 5-cycle photocatalytic tests

Table S1. Photocatalytic activity enhancement of conductive polymer/g- C_3N_4 hybrids towardphotocatalytic H2 evolution.

Catalyst	Cocatalyst Pt	Sacrificial	Light source	Activity	Ref.
		agent		(umol h ⁻¹ g ⁻¹)	
PEDOT/g-C₃N₄/Pt	1 wt %	TEOA (10 vol. %)	300 W Xe lamp (λ > 400 nm)	32.7	Ref. 1
PMDA/g-C₃N₄/Pt	1 wt%	Methanol (10 vol. %)	300 W Xe lamp (λ ≥ 420 nm)	20.6	Ref. 2
Ppy/g-C₃N₄	3 wt %	DI water	300 W Xe lamp (λ ≥ 400 nm)	385.15	Ref. 3
g-PAN/ <i>g</i> -C₃N₄/Pt	1.5 wt %	TEOA (10 vol. %)	300 W Xe lamp (λ≥ 400 nm)	37.0	Ref. 4
P3HT/ <i>g</i> -C₃N₄/Pt	1 wt %	Na ₂ S (0.25 M) /Na ₂ SO ₃ (0.25 M)	300 W Hg lamp (λ= 420 ± 10 nm)	~550	Ref. 5
C ₆ -FDBT/ <i>g</i> -C₃N₄	1 wt %	TEOA (10 vol %)	300 W Xe lamp (λ ≥ 420 nm)	495	This work

Figure S3. Photocatalytic H₂ generation over C6s/CN-5 and Pt/C6s/CN-5 hybridS under visible light irradiation.

Figure S4. TEM images of Ag nanoparticles deposit on C6s/CN-X after visible light irradiation using Ag⁺ as photoelectrons scavengers.

Figure S5. The band alignment of g-C3N4 and C6-FDTP according to the calculated band positions.

References:

(1) Xing, Z.; Chen, Z.; Zong, X.; Wang, L. Chem. Commun. 2014, 50, 6762-6764.

- (2) Chu, S.; Wang, Y.; Guo, Y.; Feng, J.; Wang, C.; Luo, W.; Fan, X.; Zou, Z. *ACS Catal.* 2013, **3**, 912–919.
- (3) Sui, Y.; Liu, J.; Zhang, Y.; Tian, X.; Chen, W. Nanoscale 2013, 5, 9150-9155.
- (4) He, F.; Chen, G.; Yu, Y.; Hao, S.; Zhou, Y.; Zheng, Y. *ACS Appl. Mater. Interfaces* 2014, **6**, 7171–7179.
- (5) Yan, H.; Huang, Y. Chem. Commun. 2011, 47, 4168-4170.