Supporting Information

Device Architecture	No. of Bladed Layers	Solvent System	PCE (%)	Ref
PET/ITO/PTAA/PFN/ MAPI/C60/BCP/Ag	1	DMF	14.58	(Martin et al., 2020)
$PET/ITO/PTAA/Cs_{0.17}FA_{0.85}Pb(I_{0.9}Br_{0.1})_3/C60/BCP/Ag$	2	DMF: NMP	13.02	(Castriotta et al., 2021)
PET/ITO/NiOx:PDA/MAPI/PCBM/BCP/Ag	2	DMF: DMSO	17.3	(Huang et al., 2020)
PET/ITO/SnO2/Cs _{0.1} FA _{0.9} Pb(I _{0.9} Br _{0.1}) ₃ /PTAA/Au	2	DMSO/ IPA	14.08	This Work
PET/ITO/SnO2/Cs _{0.1} FA _{0.9} Pb(I _{0.9} Br _{0.1}) ₃ /PTAA/Au	3	DMSO/ IPA	13.93	This Work

Table S1. Comparison of reported flexible blade-coated perovskite solar cells with this work.

Table S2. Summary of J-V Results Obtained from 160 small cells in three different conditions.

Туре		V _{oc}	J _{sc}	FF	PCE
		(V)	(mA.cm⁻²)	(%)	(%)
Incomplete	Best	0.82	18.63	63.9	9.78
Drying	Average	0.72 ± 0.15	12.30 ± 3.66	48.9 ± 16.29	4.69 ± 2.6
Incomplete	Best	1.03	17.95	68.4	12.70
Drying + LP	Average	0.82 ± 0.14	15.30 ± 1.57	55.4 ± 10.5	7.12 ± 2.0
Optimized	Best	1.03	19.18	71.4	14.08
Drying + LP	Average	1.01 ± 0.03	16.9 ± 1.2	65.0 ± 5.0	11.2 ± 1.12

Figure S1- (a) The blade coating machine (Charon by Cicci Research). (b) The blade and air nozzle. (c) The IR drying system using Helios Quartz IR Lamps.

(c) Incomplete Drying

(d) Optimized Drying

Figure S2. Photographs of PbI_2 -(FAI)_{0.3}-(CsI)_{0.15} films blade coated in Ambient dried (a) and Overdried (b) conditions. (c-d) Photographs of both PbI_2 -(FAI)_{0.3}-(CsI)_{0.15} films and converted perovskite films when the first step is incompletely dried and optimized dried while blading respectively.

Figure S3. SEM images of blade-coated PbI_2 -(FAI)_{0.3}-(CsI)_{0.15} (a-c) and their corresponding double cation perovskite layer (d-j) deposited with three different drying conditions of incomplete drying, optimized drying, and over-drying.

1 µm

Figure S4. SEM images of blade-coated PbI_2 -(FAI)_{0.3}-(CsI)_{0.15} (a-c) and their corresponding double cation perovskite layer (d-f) deposited with incomplete drying condition without LP additive, with 0.1 mg/ml LP, and with 0.25 mg/ml LP respectively.

Figure S5- PV parameters of blade-coated flexible perovskite solar cells containing 16 cells obtained from one 5×7 cm² substrate in three conditions: incomplete drying, incomplete drying + LP, and optimized dying + LP.

Figure S6- The mean normalized distribution of PCE across blade-coated substrates for incomplete and optimized drying.

Figure S7- (a-b) JV Curve and external quantum efficiency of the champion all-bladed cell. (c) The box plots of PV parameters for all-bladed perovskite solar cells.

References

Castriotta, L. A., Fuentes Pineda, R., Babu, V., Spinelli, P., Taheri, B., Matteocci, F., Brunetti, F.,

Wojciechowski, K., & Di Carlo, A. (2021). Light-Stable Methylammonium-Free Inverted Flexible

Perovskite Solar Modules on PET Exceeding 10.5% on a 15.7 cm2 Active Area. ACS Applied Materials &

Interfaces. https://doi.org/10.1021/acsami.1c05506

- Huang, Z., Hu, X., Xing, Z., Meng, X., Duan, X., Long, J., Hu, T., Tan, L., & Chen, Y. (2020). Stabilized and Operational Pbl₂ Precursor Ink for Large-Scale Perovskite Solar Cells via Two-Step Blade-Coating. *The Journal of Physical Chemistry C*, *124*(15), 8129–8139. https://doi.org/10.1021/acs.jpcc.0c00908
- Martin, B., Yang, M., Bramante, R. C., Amerling, E., Gupta, G., van Hest, M. F. A. M., & Druffel, T. (2020). Fabrication of flexible perovskite solar cells via rapid thermal annealing. *Materials Letters, 276*, 128215. https://doi.org/10.1016/j.matlet.2020.128215