Supporting Information

A bottom-up fabrication for Sulphur (S), Nitrogen (N) co-Doped two-dimensional Microporous Carbon Nano-sheets for high-performance Supercapacitor and H₂, CO₂ storage

Prajnashree Panda^{*a,b,c*} and Sudip Barman^{**a,b,c*}

^aSchool of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI,

Bhubaneswar, Orissa-752050, India, Tel.: +91 6742494183,

^bHomi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai

400094, India

^cCentre for Interdisciplinary Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Orissa-752050, India

E-mail address: sbarman@niser.ac.in.

Materials

Formamide was purchased from Merck, India. Thiourea was purchased from Spectrochem PVT. LTD. Mumbai (India). Potassium Hydroxide (KOH), Hydrochloric acid (HCl), and Sulphuric acid (H_2SO_4) were purchased from CDH chemicals, India. PTFE binder was purchased from MTI corporation. Deionized water was used to carry out all experiments.

Material Characterization

The powder x-ray diffraction patterns (p-XRD) of samples were measured by Bruker X-ray diffractometer (DAVINCI D8 ADVANCE equipped with Cu K α source of wavelength 0.154 nm). The morphological characterization was investigated by a Field-emission scanning electron microscope (FESEM) system (Model- Σ igma, Carl Zeiss, Germany) and Transmission Electron Microscopy (TEM) instrument operated at 200 kV (F200, JEOL). XPS measurement was done using AXIS ULTRA (Kratos) instrument where a monochromated Al-k α source was used. XPS was taken from the sample deposited on the silicon wafer. The CO₂ and N₂ physisorption isotherms were collected using AUTOSORB-1 (Quantachrome). The pore size distribution (PSD) was calculated using the nonlocal density functional theory (NLDFT) model while the micropore analysis was carried out using the t-plot method. LabRAM HR Evolution, Horiba Scientific, and Raman Spectrometer were used for Raman analysis using a 532 nm laser source. Electrochemical measurements were performed using CS310 Electrochemical Workstation (Corrtest Instruments).

Electrochemical Characterization

Fabrication of electrodes was carried out by mixing PTFE binder, conductive carbon, and p-CNS-X with a mass ratio of 10:10:80 (in ethanol) followed by coating over Nickel foam (1*1 cm²) and Ti foil (current collector) for the base and acid medium respectively. The electrodes were dried at 85 °C in a vacuum. The mass loading of each electrode was close to 1 mg. The single electrode Performance was measured in the electrolyte of 6M KOH and 1M H₂SO₄ in a three-electrode system configuration with Hg/HgO reference electrode (Ag/AgCl in 1M H₂SO₄) and platinum mesh as counter electrode while the symmetric device was tested in the two-electrode system. The symmetric device was prepared using glass microfibre filter paper as a separator in a CR2032 coin cell configuration. The thickness of the working electrode was measured from FESEM cross sectional area and is calculated to be 75-100 μ m. 1M Na₂SO₄ was used as an electrolyte for the test in a neutral medium. From a single electrode, the specific capacitance (C_s) Calculation was carried out from Galvanostatic Charge discharge (GCD) curves using the following equation

$$C_s = \frac{I\Delta t}{m(V_f - V_i)} \tag{S1}$$

Specific capacitance (C_s) can be calculated from the CV curve by using the following equation

$$C_{s} = \frac{\int I dV}{2m\Delta V \upsilon}$$
(S2)

Where C_s = specific capacitance I = current applied (A) Δt = discharge time (sec) m = mass of the active material (g) $V_f - V_i$ = Voltage window (V) $\int I dv$ = area under the CV curve v = scan rate (mV s⁻¹).

For a symmetric supercapacitor device, the calculation was done using the following equations.

$$C_{s} = \frac{2I\Delta t}{m(V_{f} - V_{i})}$$

$$ED = \frac{C_{cell}\Delta V^{2}}{2 \times 3.6} = \frac{C_{s}\Delta V^{2}}{8 \times 3.6}$$

$$PD = \frac{E \times 3600}{t}$$
(S4)

Where C_s = specific capacitance, ED = Energy density, and PD = power density.

Figure S1. FESEM image of (a) p-CNS-600, (b) p-CNS-700, (c) p-CNS-800, and (d) p-CNS-900 samples.

Figure S2. CV and GCD profiles of p-CNS-600.

Figure S3. CV and GCD profiles of p-CNS-700.

Figure S4. CV and GCD profiles of p-CNS-900.

Figure S5. CV curves of a symmetric capacitor at the different potential range of 1 to 1.8 V in $1M Na_2SO_4$.

Figure S6. (a) H_2 uptake of all the samples at 77K and 1 bar pressure. (b) Change in H_2 uptake as a function of surface area

Figure $S8.CO_2/N_2$ selectivities of SPCs for binary mixture of ratio (15:85) under pressure of 1 bar.

Figure S9. CO₂/CH₄ selectivities for binary mixture of ratio (50:50) under pressure of 1 bar

Sample Name	C (%)	S (%)	N (%)	O (%)
p-CNS-600	60.60	7.40	10.80	21.20
p-CNS-700	82.70	3.10	3.20	11.00
p-CNS-800	85.10	1.1	3.70	10.09
p-CNS-900	89.00	0.20	3.50	7.30

Table S1. Weight % of C, S, N, and O present in p-CNS-X samples calculated from SEM EDX analysis.

Table S2. Comparison of electrochemical performa	nce of p-CNS-X samples in 6M KOH electrolyte
--	--

Sample Name	Specific capacitance (F g ⁻¹) at 1 A g ⁻¹ current density (6M KOH electrolyte)
p-CNS-600	299
p-CNS-700	343
p-CNS-800	375
p-CNS-900	315