Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Photocatalytic selective conversion of furfural to γ-butyrolactone through

tetrahydrofurfuryl alcohol intermediates over Pd NPs decorated g-C₃N₄

Rajat Ghalta^a and Rajendra Srivastava^{a*}

^aCatalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India

*Email: rajendra@iitrpr.ac.in

*Phone: +91-1881-242175; Fax: +91-1881-223395

	Description	Page		
	Materials	S5		
	Catalyst preparation	S5		
	Photocatalytic experiment	S6		
	Reaction analysis	S7		
	Apparent Quantum Yield Calculation	S7		
	Photoelectrochemical measurement	S 8		
	Nitro blue tetrazolium (NBT) test	S8		
	Terephthalic acid (THA) test	S8		
	Iodometric test for H ₂ O ₂ detection	S9		
	Materials characterization	S9		
Table S1.	The textural properties of photocatalysts prepared in this study.	S10		
Table S2	The band edge potentials and bandgap of all the photocatalysts.	S10		
Table 62	Best fitted parameters of multiexponential components for decay	C 11		
1 able 55	curve.			
Table S4	AQY for the FAL reduction.	S11		
Table S5	AQY for the FOL reduction.	S12		
Table S6	AQY for the THFA oxidation.	S13		
Fig. S1	The digital image of photocatalytic reactor and reaction setup for the	S14		
rig. 51	photocatalytic reduction	514		
Fig S2	The digital image of the liquid phase pressure reactor and reaction	S15		
rig. 52	setup for the thermal reduction.	515		
Fig. S3	FT-IR of all synthesized photocatalysts.	S16		
	SEM images of (a) $g-C_3N_4$, (b) $E-g-C_3N_4$, (c) 0.5% Pd@E-g-C ₃ N ₄ ,			
Fig. S4	(d) $1\% Pd@E-g-C_3N_4$, (e) $2\% Pd@E-g-C_3N_4$, and (f) $3\% Pd@E-g-$	S17		
	$C_3N_4.$			
	N_2 -adsorption-isotherms of (a) g-C ₃ N ₄ , E-g-C ₃ N ₄ , and 0.5% Pd@E-			
Fig. S5	$g-C_3N_4$, (b) 1% Pd@E-g-C_3N_4, 2% Pd@E-g-C_3N_4,and 3% Pd@E-g-	S18		
	$C_3N_4.$			
Fig. S6	Pd nanoparticles size distribution from TEM.	S19		
Fig. S7	EPR signals of bulk g-C ₃ N ₄ and 3% Pd@E-g-C ₃ N ₄ .	S20		
Fig. S8	Tauc plots of all synthesized photocatalysts.	S21		

Fig. S9	LSV spectra of pristine $g-C_3N_4$ and 3% Pd@E-g-C ₃ N ₄ in (a) dark and (b) in light.	S22
Fig. S10	FAL reduction using different color 9 W LEDs (Reaction conditions: 1% Pd@E-C ₃ N ₄ (25 mg), FAL (0.1 mmol), IPA (5 ml), time (5 h), and H ₂ (2 bar)).	S22
Fig. S11	(a) FAL reduction at different temperatures in dark (Reaction conditions: 1% Pd@E-C ₃ N ₄ (25 mg), FAL (0.1 mmol), IPA (5 ml), time (1h), and H ₂ (5 bar), and (b) THFA oxidation with different catalysts (Reaction conditions: catalyst (25 mg), light source (150W LED), THFA (0.1 mmol), ACN (3 ml), time (8 h), and O ₂ atmosphere (1 atm).	S23
Fig. S12	Control experiments during FAL reduction (a) with using 1.5 mmol of electron scavenger, (b) by employing two different catalysts in light (rt) and in dark (at 120 °C), (c) in IPA, ACN and CAN + TEA. (Reaction conditions: 1% Pd@E-g-C ₃ N ₄ (25 mg), light source (150W LED), FAL (0.1 mmol), IPA (5 ml), time (1 h), and H ₂ (2 bar in light) and H ₂ (5 bar in dark).	S24
Fig. S13	Control experiments during THFA oxidation (a) using 1.5 mmol of electron scavenger, (b) using 1.5 mmol of superoxide scavenger, (c) 1.5 mmol of hole scavenger, and (d) using 1.5 mmol of OH• radical scavenger. (Reaction conditions: 1% Pd@E-g-C ₃ N ₄ (25 mg), light source (150W LED), THFA (0.1 mmol), ACN (3 ml), time (8 h), and O_2 atmosphere (1 atm).	S25
Fig. S14	(a) Comparative absorption spectra of NBT solution before and after light illumination for 15 min over pristine $g-C_3N_4$ and Pd decorated E-g-C ₃ N ₄ , (b) Comparative fluorescence spectra of THA solution before and after light illumination for 60 min over $g-C_3N_4$ and Pd decorated E-g-C ₃ N ₄ , and (c) UV-visible spectra recorded during the iodometric test for the analysis of photogenerated H ₂ O ₂ during the reaction.	S26
Fig. 815	Proposed mechanism for the hot electron mediated H ₂ dissociation over Pd NPs.	S27

	(a) Recyclability data using 1% Pd@E-g-C ₃ N ₄ for FAL reduction	
	reaction (Reaction conditions: 1% Pd@E-g-C ₃ N ₄ (25 mg), light	
	source (150W LED), FAL (0.1 mmol), IPA (5 ml), time (1 h), and H_2	
	(2 atm) (b) XRD of fresh and spent 1% Pd@E-g-C ₃ N ₄ , (c) FT-IR of	
Fig. S16	fresh and spent 1% Pd@E-g-C ₃ N ₄ , (d) XPS elemental survey for	S28
	fresh and spent 1% Pd@E-g-C ₃ N ₄ , (e) deconvoluted XPS of Pd NPs	
	in spent 1% Pd@E-g-C ₃ N ₄ , (f) SEM images of fresh and spent 1%	
	$Pd@E-g-C_3N_4$, and (g) DR UV-vis spectra of fresh and spent 1%	
	$Pd@E-g-C_3N_4.$	
	a) Recyclability data using 1% Pd@E-g-C ₃ N ₄ in THFA oxidation	
	(Reaction conditions: $1\% Pd@E-g-C_3N_4$ (25 mg), light source (150W	
	LED), THFA (0.1 mmol), ACN (3 ml), time (8 h), and O ₂ atmosphere	
	(1 atm), (b) XRD of fresh and spent $1\% Pd@E-g-C_3N_4$, (c) FT-IR of	
Fig. S17	fresh and spent 1% Pd@E-g-C $_3N_4$, (d) XPS elemental survey of fresh	S29
	and spent 1% Pd@E-g-C ₃ N ₄ , (e) deconvoluted XPS of Pd NPs in	
	spent 1% Pd@E-g-C ₃ N ₄ , (f) SEM images of fresh and spent 1%	
	$Pd@E-g-C_3N_4$, and(g) DR UV-vis spectra of fresh and spent 1%	
	$Pd@E-g-C_3N_4.$	

Experimental section

Materials

All chemicals used in this study were of AR grade and used as received without any further treatment. Furfural (FAL), furfuryl alcohol (FOL), tetrahydrofurfuryl alcohol (THFA), palladium(II) chloride, methanol, ethanol, urea, IPA (propane-2-ol), nickel nitrate hexahydrate, cobalt nitrate hexahydrate, and acetonitrile were obtained from Merck India Pvt. Ltd., whereas NaOH, KI, and ammonium molybdate were procured from Loba Chemie, Pvt. Ltd., India. Nitro blue tetrazolium (NBT), and 2-hydroxyl terephthalic acid (THA) were purchased from Sigma Aldrich.

Catalyst preparation

Synthesis of g-C₃N₄

Urea-derived graphitic carbon nitride $(g-C_3N_4)$ was synthesized using a previously reported method in which 15 g of urea was first crushed into a fine powder in a mortar pestle. Then the powder was kept in the capped crucible. The muffle furnace was programmed for heating at 550 °C for 3 h with a ramp of 2.5 °C per min. After the end of the program, the material was removed from the furnace and ground in a mortar pestle.

Synthesis of E-g-C₃N₄

The 400 mg of $g-C_3N_4$ was mixed with 100 ml of ethanol and stirred for 30 min. Then the suspension was sonicated for 3 h. The ethanol was evaporated at 80 °C, and obtained material was crushed in fine powder using a mortar pestle.

Synthesis of x% Pd@E-g-C₃N₄

400 mg of $g-C_3N_4$ was mixed with 100 ml of ethanol and stirred for 30 min. Then the suspension was sonicated for 3 h. Meanwhile, the required amount of PdCl₂ was mixed in 10 ml ethanol. After sonication, the PdCl₂ solution was added dropwise to the suspension with continuous stirring. After the addition, the ethanol was evaporated at 80 °C. The obtained greyish material was finely powdered using a mortar pestle and transferred into the boat-type crucible. The material was heated at 300 °C for 3 h in H₂ (5%)/Ar(95%) using a tube furnace. The obtained material is designated as x% Pd@E-g-C₃N₄, where x% is the percentage of Pd NPs in the material, i.e. (0.5%, 1%, 2%, and 3%).

Synthesis of 1% M@E-g-C₃N₄ (M = Co, and Ni)

For the synthesis of these materials, the same procedures were employed where 400 mg of g-C₃N₄ was first mixed with 100 ml ethanol and then sonicated for 3 h. Then the required amount of metal salt (cobalt nitrate hexahydrate) for 1% Co@E-g-C₃N₄, and nickel nitrate hexahydrate for 1% Ni@E-g-C₃N₄) was added in 10 ml of ethanol. The metal salt solution was dropwise added to the sonicated suspension, and finally, the ethanol was evaporated. The obtained material was reduced in a tube furnace in H₂(5%)/Ar(95%) for 3 h at 450 °C.

Photocatalytic experiment

Photocatalytic FAL reduction

0.1 mM of FAL was taken in 5 mL of solvent in a glass reactor. 30 mg of catalyst was added and stirred in the dark for 30 min to establish equilibrium. H_2 (2 bar) was introduced in the glass reactor. The reaction was performed for different time intervals in a 150 W LED with continuous starring. The catalyst was removed from the reaction mixture using a centrifuge. Also, a similar reaction was carried out in the sunlight in March 2022 at IIT Ropar.

Photocatalytic THFA Oxidation

0.1 mM of THFA was taken in 3 mL of acetonitrile in a round bottom flask. 30 mg of catalyst was added and stirred in the dark for 30 min to establish equilibrium. After that, the solution was purged with oxygen gas for 10 min. The oxygen balloon was attached to the round bottom flask to maintain the oxygen atmosphere. The reaction was conducted using 150 W LED. The catalyst was removed from the reaction mixture using a centrifuge.

Thermal FAL reduction

0.1 mM of FAL was taken in 5 mL of solvent in a Büchi make liquid phase pressure reactor. 30 mg of catalyst was added to the reaction mixture. The reactor was purged with H_2 and then pressurized with H_2 (5 bar) at ambient temperature. The reactions were conducted at a desired temperature with continuous stirring for a desired time After the reaction, the reactor was cooled to ambient temperature, and the catalyst was removed from the reaction mixture using a centrifuge. The analysis was conducted in a similar manner as was conducted under photocatalytic conditions.

Analysis of the reaction mixture

The reaction mixture was analyzed with gas chromatography (GC) (Yonglin; 6100; GC column: BP-5; 30 m×0.25 mm×0.25 µm) fitted with FID detector. High-purity N₂ gas (99.99%, GC grade) was used as the carrier gas with a flow rate of 10 ml/min, whereas H₂ (99.99%, GC grade) and Air (99.99%, GC grade) were used as ignition gases. The injector and detector temperature were set at 280 °C. GC column oven temperature was programmed as follows: Initial temperature = 60 °C, hold time = 2 min followed by temperature ramping to a final temperature of 280 °C with a ramp rate of 5 °C /min. 0.2 µL of the sample was injected for the analysis. The calibration curves were constructed for pure FAL, FOL, THFA, and GBL (diluted in 2-propanol) for the determination of conversion and selectivity. Products were also confirmed using GC-MS (Shimadzu GCMS-QP 2010 Ultra; Rtx-5 Sil Ms; 30 m × 0.25 mm × 0.25 µm).

Apparent Quantum Yield Calculation

The quantum yield of the reaction was calculated using eq (4), which gives the ratio between the electron involved in the reaction and the molar flow of photons introduced into the reactor (eqn (1)). The apparent wavelength (λ) of photons was estimated from the band gap of the catalyst, determined from Tauc Plots. The quantum yield calculated in this manner was not the exact value but served as a reference to compare the photo efficiency of photocatalytic system.

Apparent Quantum Yeald
$$(\phi) = \frac{Number \ of \ reacted \ electron \ \times \ 100}{Number \ of \ incident \ photon}$$

(1)

Number of reacted electron = Reactant conversion
$$(mol^{-1}) \times N_A(mol)$$
 (2)

Number of incident photon =
$$\frac{\text{Light intansity } (Wm^{-2}) \times \text{Area } (m^2) \times \text{Time } (s)}{\frac{h (Js) c (ms^{-1})}{\lambda (m)}}$$

(3)

$$\phi = \frac{Reactant \ conversion \ (mol^{-1}) \times N_A \ (mol) \times h \ (Js)c \ (ms^{-1}) \times 100}{Light \ intansity \ (Js^{-1}m^{-2}) \times Area \ (m^2) \times Time \ (s) \times \lambda \ (m)}$$
(4)

Photoelectrochemical measurement

The photoelectrochemical analyses were performed with PGSTAT302N Autolab electrochemical workstation using standard three-electrode grouping in Pyrex cell with a 0.5 M aqueous solution of sodium sulfate as electrolyte. The coated photocatalyst acts as a photoanode (working electrode), Pt wire electrode as a counter electrode, and Ag/AgCl as a reference electrode. Photoanode was prepared by coating photocatalyst on glass slides containing fluorine-doped tin oxide (FTO), cleaned with acetone, rinsed with DI water, and oven-dried before use. The catalyst was coated over the FTO surface using the drop-casting method. To make a binder solution, 1.5 ml of ethanol was mixed with 1 ml of water and 40 µl of Nafion. 20 ml of the photocatalyst was added in binder solution and sonicated for 10 minutes. The binder solution was casted dropwise over the glass surface using a dropper and hotplate with a temperature of 45 °C. The electrochemical impedance spectroscopy was calculated in the frequency range of 1 MHz to 1 Hz using a sinusoidal AC perturbation signal of 5 mV. Mott-Schottky experiment was conducted at 1000 Hz constant frequency in dark conditions. LSV and transient photocurrent measurements were carried out under dark and illumination conditions using a 300 W Xenon arc lamp (Newport-R22) with a cut-off filter (λ > 420 nm and intensity of 100 mW.cm⁻²).

Nitro blue tetrazolium (NBT) test

10 mL of 2.5×10^{-5} M aqueous solution of NBT was mixed with the 5 mg of the catalyst. This mixture was illuminated with light under continuous stirring. After 15 min, the catalyst was separated from the solution using a centrifuge. The solution was monitored using a UV-visible spectrophotometer, and its absorbance for NBT was compared with the neat stock solution. A decreased absorbance peak of NBT after light illumination confirms the capability of the photocatalyst for the generation of O_2^{-1} .

Terephthalic acid (THA) test

The 5×10^{-3} M aqueous solution of THA was prepared with a small amount of NaOH to make THA soluble in an aqueous medium. 20 mg of catalyst was mixed with the 20 ml of THA solution and exposed to light for 1 h. Then catalyst was separated from the solution using a centrifuge. The clear solution was monitored using a fluorescence spectrophotometer with an excitation wavelength of 330 nm. The emission peak at 425 nm confirms 2-hydroxyl terephthalic acid (THA) in the reaction mixture. The OH radicals react with THA (non-fluorescent) and convert it into THA (fluorescent). The emission peak of the reaction mixture was compared with the stock solution.

Iodometric test for H₂O₂ detection

The 0.1 M solution of potassium iodide (KI) and the 0.1 M solution of ammonium molybdate were prepared. The photocatalytic THFA oxidation reaction was performed for a different interval of time. The 3 ml of the reaction mixture was mixed with 0.5 ml of KI and 0.5 ml of ammonium molybdate solution. The obtained mixture was analysed using UV spectrophotometer. H_2O_2 in the solution oxidizes iodide to form iodine which gives a peak at 360 nm in UV visible spectrometer. The intensity of the 360 nm peak gives the amount of H_2O_2 present in the reaction mixture.

Materials characterization

Physicochemical characterization

X-ray diffraction (XRD) patterns were recorded from RIGAKU Mini-flex diffractometer using Cu K α radiation on the 2 θ scale 5° to 80°. The surface area and porosity were examined using N₂ adsorption-desorption measurements with the BELSORP instrument. All the materials were outgassed in the degassing port at 200 °C for 4 h before performing the N₂ adsorption. The relative pressure from 0.05 to 0.3 was chosen to analyze the specific surface area by applying Brunauer-Emmett-Teller (BET) equation. FT-IR spectra were recorded using Bruker Tenser 27 spectrometer. Joel instrument was used for the SEM analysis of the materials' morphology using an accelerating voltage of 10 kV. UV-DRS study of all catalysts was performed on a UV-visible spectrophotometer of Shimadzu (UV-2600) using BaSO₄ as standard reference material. The liquid UV analysis was also conducted using a UV-visible spectrophotometer of Shimadzu (UV-2600). Furthermore, the nanostructure level analysis was performed using a high-resolution transmission electron microscope (JEOL, Model: JEM 2100F) at an accelerating voltage of 200 kV (IIT Bombay). The X-Ray photoelectron spectroscopy (XPS)

was carried out on a Thermofisher scientific 'Nexsa Base' instrument (IIT Mandi). Fluorescence analysis was done by using Perkin Elmer LS55. The fluorescence decay time was evaluated using the TCSPC instrument of Fluorolog 3-221 fluorimeter equipped with an LED laser (INST Mohali). Electron paramagnetic resonance (EPR) spectroscopy was performed at room temperature by using a spectrometer (Bruker ER073, USA) equipped with an EPR magnet system (IIT Roorkee)

Entry	y Catalyst BET surface area (m ² g ⁻¹)		Total pore volume (cm ³ g ⁻¹)
1	g-C ₃ N ₄	38	0.260
2	E-g-C ₃ N ₄	64	0.310
3	$0.5\% Pd@E-g-C_3N_4$	71	0.325
4	$1\% Pd@E-g-C_3N_4$	74	0.332
5	$2\% Pd@E-g-C_3N_4$	79	0.339
6	3% Pd@E-g-C ₃ N ₄	82	0.342

Table S1. The textural properties of catalysts prepared in this study.

Table S2. The band edge potentials and bandgap of all the photocatalysts.

Entry	Catalyst	Slope value	Band Gap	Flat Band Potential vs. Ag/AgCl	Conductio n Band edge Potential vs. Ag/AgCl	Conducti on Band Edge Potential vs. NHE	Valance Band Edge Potential vs. NHE
1	g-C ₃ N ₄	1.10×10 ¹⁰	2.84	-1.11	-1.21	-1.01	1.83
2	E-g-C ₃ N ₄	6.99 ×10 ⁹	2.85	-1.14	-1.24	-1.04	1.81

3	0.5% Pd@E- g-C ₃ N ₄	8.04×10^{9}	2.86	-1.25	-1.35	-1.15	1.71
4	1% Pd@E-g- C ₃ N ₄	6.87×10^{9}	2.88	-1.29	-1.39	-1.19	1.69
5	2% Pd@E-g- C ₃ N ₄	5.05× 10 ⁹	2.89	-1.26	-1.36	-1.16	1.73
6	3% Pd@E-g- C ₃ N ₄	4.50× 10 ⁹	2.91	-1.20	-1.30	-1.10	1.80

Entry	Catalyst	Pre-exponential functions			Decay lifetimes (ns)				Fractional contribution					
		α ₁	α2	α ₃	α ₄	τ ₁	τ_2	$ au_3$	$ au_4$	$\langle \tau \rangle$	f_1	f_2	f_3	f_4
1	g-C ₃ N ₄	0.40	0.17	0.32	0.1	4.6	19.3	1.1	121.8	87.9	0.10	0.19	0.02	0.68
2	1% Pd @E-g- C ₃ N ₄	0.33	0.11	0.08	0.47	6.1	29.3	174	1.6	125	0.10	0.16	0.69	0.04

 Table S3. Best fitted parameters of multiexponential components for decay curve.

Table S4. AQY for the FAL reduction.

Entry	Catalyst	FAL Conversion	FOL Selectivity	THFA Selectivity	AQY
1	g-C ₃ N ₄	2	100	0	12 × 10-3
2	E-g-C ₃ N ₄	4	100	0	25 × 10 ⁻³
2	1% Pd @g-C ₃ N ₄	45	93	7	289×10^{-3}
3	0.5% Pd @E-g-C ₃ N ₄	38	100	0	241 × 10 ⁻³
4	1% Pd @E-g-C ₃ N ₄	60	89	11	383 × 10 ⁻³
5	2% Pd @E-g-C ₃ N ₄	70	85	15	448 × 10 ⁻³
6	3% Pd @E-g-C ₃ N ₄	75	67	33	484 × 10 ⁻³
7	1% Ni @E-g-C ₃ N ₄	11	100	0	70 × 10 ⁻³
8	1% Co @E-g-C ₃ N ₄	4	100	0	25×10^{-3}

Reaction conditions: Catalyst (25 mg), light source (150 W LED), FAL (0.1 mmol), IPA (5 ml), time (1 h), and H₂ (2 bar).

Entry	Catalyst	FOL Conversion	THFA Selectivity	AQY
1	g-C ₃ N ₄	2	100	13 × 10 ⁻³
2	E-g-C ₃ N ₄	3	100	19 × 10 ⁻³
2	1% Pd @g-C ₃ N ₄	36	100	228 × 10 ⁻³

Table AQY	3	0.5% Pd @E-g-C ₃ N ₄	18	100	114 × 10 ⁻³	S5.
FOL	4	1% Pd @E-g-C ₃ N ₄	44	100	281 × 10 ⁻³	
	5	2% Pd @E-g-C ₃ N ₄	62	100	397 × 10 ⁻³	
	6	3% Pd @E-g-C ₃ N ₄	80	100	514 × 10 ⁻³	

the

reduction.

Reaction conditions: Catalyst (25 mg), light source (150 W LED), FOL (0.1 mmol), IPA (5 ml), time (1h), and H_2 (2 bar).

Entry	Catalyst	THFA Conversion	GBL Selectivity	AQY
1	g-C ₃ N ₄	35	100	28 × 10 ⁻³
2	E-g-C ₃ N ₄	40	100	32 × 10 ⁻³
2	0.5% Pd @E-g-C ₃ N ₄	53	100	42 × 10 ⁻³
3	1% Pd @E-g-C ₃ N ₄	62	100	50 × 10 ⁻³
4	2% Pd @E-g-C ₃ N ₄	70	100	56 × 10 ⁻³
5	3% Pd @E-g-C ₃ N ₄	75	100	59 × 10 ⁻³

Table S6. AQY for the THFA oxidation.

Reaction conditions: Catalyst (25 mg), light source (150W LED), THFA (0.1 mmol), ACN (3 ml), time (8 h), and O_2 atmosphere (1 bar).

Fig. S1. The digital image of photocatalytic reactor and reaction setup for the photocatalytic reduction.

Fig. S2. The digital image of a liquid phase pressure reactor and reaction setup for the thermal catalytic reduction.

Fig. S3. FT-IR of all the synthesized photocatalysts.

Fig. S4 SEM image of (a) $g-C_3N_4$, (b) $E-g-C_3N_4$, (c) 0.5% Pd@E- $g-C_3N_4$, (d) 1% Pd@E- $g-C_3N_4$, (e) 2% Pd@E- $g-C_3N_4$, and (f) 3% Pd@E- $g-C_3N_4$.

Fig. S5 N₂-adsorption-isotherms of (a) $g-C_3N_4$, $E-g-C_3N_4$, and 0.5% Pd@E- $g-C_3N_4$, (b) 1% Pd@E- $g-C_3N_4$, 2% Pd@E- $g-C_3N_4$, and 3% Pd@E- $g-C_3N_4$.

Fig. S6 Pd nanoparticles size distribution from TEM.

Fig. S7 EPR signals of bulk g-C₃N₄ and 1% Pd@E-g-C₃N₄.

Fig. S8 Tauc plots of all synthesized photocatalyst.

Fig. S9 LSV spectra of pristine $g-C_3N_4$ and 3% Pd@E-g-C₃N₄ in (a) dark and (b) light.

Fig. S10 FAL reduction using different colour 9 W LEDs (Reaction conditions: 1% Pd@E-C₃N₄ (25 mg), FAL (0.1 mmol), IPA (5 ml), time (5 h), and H₂ (2 bar)).

Fig. S11 (a) FAL reduction at different temperatures in dark (Reaction conditions: 1% Pd@E-C₃N₄ (25 mg), FAL (0.1 mmol), IPA (5 ml), time (1h), and H₂ (5 bar), and (b) THFA oxidation with different catalysts (Reaction conditions: catalyst (25 mg), light source (150W LED), THFA (0.1 mmol), ACN (3 ml), time (8 h), and O₂ atmosphere (1 bar).

Fig. S12 Control experiments during FAL reduction (a) with using 1.5 mmol of electron scavenger, (b) by employing two different catalysts in light (rt) and in dark (at 120 °C), (c) in IPA, ACN and ACN + TEA. (Reaction conditions: 1% Pd@E-g-C₃N₄ (25 mg), light source (150W LED), FAL (0.1 mmol), IPA (5 ml), time (1 h), and H₂ (2 bar in light) and H₂ (5 bar in dark).

Fig. S13 Control experiments during THFA oxidation (a) using 1.5 mmol of electron scavenger, (b) using 1.5 mmol of superoxide scavenger, (c) 1.5 mmol of hole scavenger, and (d) using 1.5 mmol of OH• radical scavenger..(Reaction conditions: 1% Pd@E-g-C₃N₄ (25 mg), light source (150W LED), THFA (0.1 mmol), ACN (3 ml), time (8 h), and O₂ atmosphere (1 atm).

Fig. S14 (a) Comparative absorption spectra of NBT solution before and after light illumination for 15 min over pristine $g-C_3N_4$ and Pd decorated E- $g-C_3N_4$, (b) Comparative fluorescence spectra of THA solution before and after light illumination for 60 min over $g-C_3N_4$ and Pd decorated E- $g-C_3N_4$, and (c) UV-visible spectra recorded during the iodometric test for the analysis of photogenerated H₂O₂ during the reaction.

Fig. S15 Proposed mechanism for the hot electron mediated H_2 dissociative adsorption and desorption over Pd NPS.

Fig. S16 (a) Recyclability data using 1% Pd@E-g-C₃N₄ for FAL reduction reaction (Reaction conditions: 1% Pd@E-g-C₃N₄ (25 mg), light source (150W LED), FAL (0.1 mmol), IPA (5 ml), time (1 h), and H₂ (2 atm) (b) XRD of fresh and spent 1% Pd@E-g-C₃N₄, (c) FT-IR of fresh and spent 1% Pd@E-g-C₃N₄, (d) XPS elemental survey for fresh and spent 1% Pd@E-g-C₃N₄, (e) deconvoluted XPS of Pd NPs in spent 1% Pd@E-g-C₃N₄, (f) SEM images of fresh and spent 1% Pd@E-g-C₃N₄, and (g) DR UV-vis spectra of fresh and spent 1% Pd@E-g-C₃N₄.

Fig. S17 (a) Recyclability data using 1% Pd@E-g-C₃N₄ in THFA oxidation (Reaction conditions: 1% Pd@E-g-C₃N₄ (25 mg), light source (150W LED), THFA (0.1 mmol), ACN (3 ml), time (8 h), and O₂ atmosphere (1 atm), (b) XRD of fresh and spent 1% Pd@E-g-C₃N₄, (c) FT-IR of fresh and spent 1% Pd@E-g-C₃N₄, (d) XPS elemental survey of fresh and spent 1% Pd@E-g-C₃N₄, (e) deconvoluted XPS of Pd NPs in spent 1% Pd@E-g-C₃N₄, (f) SEM images of fresh and spent 1% Pd@E-g-C₃N₄, and(g) DR UV-vis spectra of fresh and spent 1% Pd@E-g-C₃N₄.