<u>Supplemental Material: Cooperative Role of Nitrogen Defects and Cyano-group</u> <u>Functionalization in Carbon Nitride Towards Enhancing its CO₂ Photoreduction Activity</u>

Shreya Singh¹, Pankaj Tiwari^{1#}, Guguloth Venkanna,^{1#} Kamal K. Pant^{1*}, Pratim Biswas^{2*}

¹Department of Chemical Engineering, Indian Institute of Technology Delhi-110016, India, ²Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA * <u>kkpant@chemical.iitd.ac.in</u>

Fig. S1: Reactor Setup for Photocatalytic CO₂ reduction

Debye Scherrer equation¹ for the calculation of Crystalline size (D)

$$D = \left(\frac{k\lambda}{\beta \cos\theta}\right) \qquad \qquad \mathrm{Eq-S1}$$

where D is the size of the particle, K is known as the Scherer's constant (K=0.94), λ is the X-ray wavelength (1.54178Å), β is full width at half maximum (FWHM) of the diffraction peak, and θ is the angle of diffraction

Fig. S2: FTIR Spectra for the controlled experiments for verification of generation of C≡N functionality due to the reductive role of NaBH₄ and temperature

Fig. S3: High resolution O 1s spectra for CN-400-air sample

Sample	N (type, corresponding area)		C (type, corresponding area)		
CN	397.640	16143.870	C-C	2986.049	
	398.951	3443.514	N-C=N (287.9)	9945.996	
	400.077	2427.067			
CN-400-air	398.681	12084.840	C-C	3634.971	
	400.000	3755.500	N-C=N (288.0)	7230.412	
	401.123	3270.218	C≡N (286.239)	5882.637	

Table S1: XPS surface ratio for C/N over prepared samples.

Fig. S4: High resolution C 1s spectra for CN-500-air, CN-500-N₂ sample

Fig. S5: High resolution N 1s spectra for CN-500-air, CN-500-N₂ sample

Fig. S6: Histogram for size distribution

Fig. S7: Elemental mapping and distribution for CN-400-air

Fig. S8: XPS of carbon nitride sample after photoreduction reaction (A) full scan (B) C 1s (C) N 1s

Fig. S9: Pristine, CN-400-air, CN-500-N2 and CN-500-air samples coated over the FTO (left to right)

Fig. S10: Tauc plot for CN and CN-400-air samples

Fig. S11: DFT models for (A) Melon, (B) C=N-Melon and (C) C=N-N_v-Melon

Fig. S13: Band structure profile for CN (left) and CN-C≡N-N_v (right)

Band edge positions determination:

The valance band positions were done through valance band XPS measurements (Fig. 5B main text). The VB-XPS provides the position of valance band maxima with reference to the fermi level. For the calculation of the fermi levels, Mott Schottky curves were utilized whose X-axis intercept provided the flat band potential w.r.t. Ag/AgCl. The fermi levels w.r.t. NHE were calculated using:

$$E_{fermi, NHE} = E_{fb, Ag/AgCl} + 0.22$$

With the calculated values of fermi levels, the valance band edge potentials were determined using VB-XPS given by:

$$E_{VB, NHE} = E_{fermi, NHE} + E_{VB-XPS}$$

The calculated bandgap values obtained from UV-DRS measurements were utilized to obtain the CB positions given by:

$$E_{CB, NHE} = E_{VB, NHE} + E_g$$

The calculated valance band position for CN and CN-400-air are 1.95 and 1.78 eV vs the normal hydrogen electrode (NHE), respectively and the estimated CB minima are -0.79 and -0.85 eV respectively.

Model	Estimated bandgap values (eV)	Fermi level position (eV)
CN	2.439	-4.881
CN-C≡N	2.109	-5.059
CN-N _v	0.377	-4.521
CN-C≡N-N _v	1.759	-4.503

Table S2: DFT calculated energy gaps and fermi levels for different models

Fig S15: (A) Controlled experiments for confirmation of the CO₂ photocatalytic reduction. Photocatalytic CH₄ and CO production without light, without catalysts, without CO₂ or without H₂O on CN-400-air sample (B) Mass spectrum of photocatalytic products generated during Isotopic ¹³CO₂ labelled photoreduction experiment over CN-400-air

Fig S16: Electrochemical impedence spectra at different applied potentials

Catalyst Modification	Reaction condition	Product yield µmol/g-h	Reference
CN-C≡N-N _v	5 mg photocatalyst in 5mL H ₂ O-TEOA	CH ₄ 165.78	this work
	mixture (10%), 1.25 kg/cm ² CO ₂	CO 0.9514	
	pressure, room temperature, 250 W		
	Hg lamp		
Nv-rich-CN	0.03 g photocatalysts in 0.5mL H ₂ O,77	CO 6.61	2
	kPa,	CH ₄ 0.2	
	room temperature,		
	300W Xenon lamp		
u-0.05PEI	catalyst 20 mg, H ₂ O 100 mL, 20 °C, 4	CO 8.215	3
	h, ultraviolet light	CH ₄ 0.42	
CCN	100 mg, 350 W Xe lamp, gas-phase	CO 1.07	4
	CO ₂ reduction	CH ₄ 1.91	
	0.1 g photocatalysts in 0.8 mL H_2O ,	CO 0.63	5
KBH-CN	2bar,	CH ₄ 1.19	
	300W Xenon lamp		

Table S3: Comparison of CO₂ reduction rates of CN-C≡N-N_v with reported modified carbon nitride

CN-525	50 mg, TEOA 15 vol %, 300 W xenon	CO 6.21	6
	lamp		
DCN-P	0.05 g photocatalyst in 100 mL H ₂ O,	CO 3.94	7
	room temperature,	CH ₄ 7.42	
	300 W Xe lamp		

Table S4: Element analysis for different modified carbon nitride materials

	C (wt %)	N (wt %)	H (wt %)	N/C (atomic ratio)
CN	33.2	59.9	1.9	1.54
CN-300-N ₂	33.6	59.4	2.3	1.51
CN-300-air	34.9	58.1	2.1	1.43
CN-400-N ₂	34.4	58.5	2.1	1.46
CN-400-air	37.8	54.8	2.6	1.24
CN-400-reheat	33.7	59.5	2.0	1.51

References:

- 1 B. Ingham and M. F. Toney, *Metallic Films for Electronic, Optical and Magnetic Applications:* Structure, Processing and Properties, 2014, 3–38.
- 2 F. Li, X. Yue, D. Zhang, J. Fan and Q. Xiang, *Appl Catal B*, , DOI:10.1016/j.apcatb.2021.120179.
- 3 X. Song, X. Zhang, X. Li, H. Che, P. Huo, C. Ma, Y. Yan and G. Yang, *J Colloid Interface Sci*, 2020, **578**, 574–583.
- 4 P. Xia, M. Antonietti, B. Zhu, T. Heil, J. Yu, S. Cao, P. F. Xia, B. C. Zhu, J. G. Yu, S. W. Cao, M. Antonietti and T. Heil, *Adv Funct Mater*, 2019, **29**, 1900093.
- 5 K. Wang, J. Fu and Y. Zheng, *Appl Catal B*, 2019, **254**, 270–282.
- 6 W. Tu, Y. Xu, J. Wang, B. Zhang, T. Zhou, S. Yin, S. Wu, C. Li, Y. Huang, Y. Zhou, Z. Zou, J. Robertson, M. Kraft and R. Xu, *ACS Sustain Chem Eng*, 2017, **5**, 7260–7268.
- W. Ma, N. Wang, Y. Guo, L. Yang, M. Lv, X. Tang and S. Li, *Chemical Engineering Journal*, 2020, 388, 124288.