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Experimental section
Synthesis of LLZO powder
LLZO was prepared by a simple sol-gel process. LiOH·H2O, La(NO3)3·6H2O, and 
ZrO(NO3)2·xH2O (All purchased from Aladdin, Shanghai, China) were weighed to 
reach the intended stoichiometry with an excess of 10wt% LiOH·H2O. Then dissolve 
them in deionized water with stirring at 80°C. Citric acid was then added to the 
abovementioned solution at a citric acid to cation molar ratio of 4:1. After dissolution, 
the obtained homogeneous solution was heated at 80°C for 12 h with magnetic stirring 
to evaporate the solvent. The product was then dried at 250°C for 2 h and gradually 
formed a tawny gel. The obtained precursor was ground and calcinated at 700°C for 5 
h in air. Finally, the LLZO particles were ball milled to obtain nano-level particles.

Fig. S1 SEM image of (a) LLZO-air and (b) 7%SA/LLZO.

Fig. S2 a-b) HRTEM image of LLZO-air and 7%SA/LLZO particles.



Fig. S3 XPS results of (a) La and (b) Zr of LLZO-air and 7%SA/LLZO.

Fig. S4 Photographs of mixed slurry after standing for 24h of (a) LLZO-air-PEO-LiTFSI, (b) 
7%SA/LLZO-PEO-LiTFSI.



Fig. S5 SEM image of 7%SA/LLZO-PEO-LiTFSI PGE and corresponding EDX maps of La and 
Zr elements.

Fig. S6 The FTIR spectra of LLZO-air-PEO-LiTFSI and 7%SA/LLZO-PEO-LiTFSI.



Fig. S7 DSC profiles of different X%SA/LLZO-PEO-LiTFSI PGEs.

Fig. S8 7Li solid-state NMR spectra of LLZO-air-PEO-LiTFSI and 7%SA/LLZO-PEO-LiTFSI.



Fig. S9 DC polarization curve of LLZO-air-PEO-LiTFSI obtained from chronoamperometry with 
an applied polarization voltage of 10 mV and the inset shows the Nyquist profiles of the 
symmetric battery before and after polarization.

Fig.S10 Charge/discharge curves of a) Li/7%SA/LLZO-PEO-LiTFSI/LFP and b) Li/LLZO-air-
PEO-LiTFSI/LFP under 0.3 C.



Fig.S11 Cycling performances of Li/LLZO-air-PEO-LiTFSI/LFP at 0.5 C.

Fig.S12 Cycling performances of Li/7%SA/LLZO-PEO-LiTFSI /LFP at different rate (the mass 
loading of LFP was 18.2 mg·cm-2).



Table S1 Comparison of Li|PGEs|LiFePO4 batteries with different methods to remove Li2CO3 from the surface of LLZO.
Note: In 
this work, 
the 

Li|LiFePO4 battery exhibits higher discharge capacity and capacity retention after cycling at a larger rate, and the operating temperature of the battery is lower than 
other works. Our work has an advantageous overall performance.

Method, composition Ionic 
conductivit
y (S·cm-1)

Stability with Li Cell performance Reference

High-temperature 
treatment(600oC)
LLZO/PEO solid state
electrolyte

3.4 10-5 ×
S·cm-1

at 25 °C

600 h at
0.2 mA·cm-2

Coupled with LFP
After 200 cycles at 0.1C,
remained 125.3 mAh·g−1 at 60oC

1

HCl treatment LLZTO/PEO
Quasi-solid state electrolyte

2.2×10−4 
S·cm−1 at 
25 °C

400 h at
0.2 mA·cm-2

Coupled with LFP
After 150 cycles at 0.5C,
remained 154.8 mAh·g−1 at 60oC

2

Dopamine coating
LLZO/PEO solid state
electrolyte

1×10−4 
S·cm−1 at 
25 °C

600 h at
0.1 mA·cm-2

Coupled with LFP
After 100 cycles at 0.1C,
remained 134.8 mAh·g−1 at 25oC

3

Al–Ta and Al–Nb doped
LLZO solid state
electrolyte

-- 80 h at
0.1 mA·cm-2

at 55 °C

-- 4

reacting garnet with carbon at 
700 °C 
LLZO solid state electrolyte

-- 450 h at
0.1 mA·cm-2

at 65 °C

Coupled with LFP
After 50 cycles at 0.1/0.2C,
remained 143 mAh·g−1 at 65oC

5

Salicylic treatment
LLZO/PEO solid state
electrolyte

1.2 × 10-4 
S·cm-1 at 
30 °C

1300 h at
0.1/0.2 mA·cm-2

Coupled with LFP
After 150 cycles at 0.3C,
remained 142.8 mAh·g−1 at 40oC

This work
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