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This Electronic supplementary information (ESI) consists of three sections providing mathematical derivations
of the results discussed in the main. First, in Sec. I, we solve the master equation describing thermodynamically
consistent active dynamics in a constant external field and provide explicit formulas for the first two moments of the
particle position. In Sec. II, by performing a continuum limit we obtain thermodynamically consistent coarsegrained
Langevin equations. Similar limiting procedures have been discussed recently e.g. in Refs. [1–3]. The derivation
presented in Sec. II of this ESI is similar in spirit to the one from Ref. [2]. In addition to what is discussed in
Ref. [2], we incorporate into the derivation an external force and show how to renormalize the active velocity such
that a comparison with the phenomenological ABP (Active Brownian Particle) model becomes straightforward. In
Sec. III, we derive first two moments of the particle position based on the thermodynamically consistent coarsegrained
Langevin equation derived in Sec. II.

I. POSITION STATISTICS FOR ACTIVE JUMP-DIFFUSION PROCESS

Particle’s orientation is described by the unit vector n(t) having components n(t) = (cosϕ(t), sinϕ(t)). It undergoes
rotational Brownian motion with the diffusion coefficient Dr. Hence the angle ϕ(t) between directions of n(t) and the
x axis, satisfies the Langevin equation

dϕ

dt
=
√

2Dr ξr(t), (S1)

where the Gaussian white noise ξr(t) obeys ⟨ξr(t)⟩ = 0 and ⟨ξr(t)ξr(t′)⟩ = δ(t − t′). Integration of this Langevin
equation yields

ϕ(t) = ϕ0 +
√

2Dr

∫ t

0

dt′ ξr(t
′). (S2)

In all following calculations, the initial value ϕ(0) = ϕ0 is assumed to be a random variable homogeneously distributed
over the interval [0, 2π).
Position of the particle center of mass, r(t), is a functional of the process ϕ(t). For any given trajectory of ϕ(t),

generated in accordance with Eq. (S2), we can describe r(t) by the probability density function (PDF) P (r, t). In
case of the active motion in a constant force field discussed in the main text, it satisfies the master equation

∂tP (r, t) = k+(t)P (r−n(t)δr, t)+k−(t)P (r+n(t)δr, t)− [k+(t) + k−(t)]P (r, t)−µ∇ · [FP (r, t)]+D∇2P (r, t), (S3)

where the last two terms correspond to passive diffusion of the particle. Since n(t) in this equation is a stochastic
function of time, the moments of r(t) calculated based on P (r, t) should be also averaged over all realizations of the
process ϕ(t).
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In Subsec. I A we give general results for ⟨r(t)⟩ and ⟨r2(t)⟩, which are independent of a particular form of rates
k±(t). Further, in Subsec. I B, we assume the activated rates from the main text, where k±(t) depend exponentially
on δW (t), δW (t) = −Fδr cosϕ(t), and evaluate general results of Subsec. I A for this specific scenario. Subsec. I C
gives particle moments and effective diffusion coefficient in the limit Fδr/2kBT < 1 and Subsec. ID summarizes all
formulas for F = 0.

A. General results for time-dependent rates k±(t)

To derive moments of the particle position r(t), we introduce the moment generating function φ(k, t), k = (kx, ky),
defined as

φ(k, t) =

∫
drP (r, t) ek·r. (S4)

In accordance with (S3), it satisfies the first-order linear differential equation

∂tφ(k, t) = L(k, t)φ(k, t), (S5)

where

L(k, t) = k+(t)
[
ek·n(t)δr − 1

]
+ k−(t)

[
e−k·n(t)δr − 1

]
+ µ(k·F ) +D(k·k). (S6)

Solution of Eq. (S5) subject to the initial condition φ(k, 0) = 1 [initially, the particle position is r(0) = 0] is

φ(k, t) = exp

[∫ t

0

dt′L(k, t′)

]
. (S7)

We calculate the first two moments of coordinates x(t) and y(t) based on partial derivatives of φ(k, t) with respect
to components of the vector k = (kx, ky). The first and the second partial derivatives with respect to kx read

∂kx
φ(k, t) =

[∫ t

0

dt1∂kx
L(k, t1)

]
exp

[∫ t

0

dt′L(k, t′)

]
, (S8)

∂2
kxkx

φ(k, t) =

[∫ t

0

dt1∂
2
kxkx

L(k, t1) +

(∫ t

0

dt2∂kxL(k, t2)

)2
]
exp

[∫ t

0

dt′L(k, t′)

]
, (S9)

respectively. Analogous expressions hold for partial derivatives with respect to ky. After evaluating these derivatives
at k = 0 and averaging over all realizations of the process ϕ(t), we get

⟨x(t)⟩ =
〈∫ t

0

dt1∂kx
L(0, t1)

〉
, (S10)

⟨y(t)⟩ =
〈∫ t

0

dt1∂ky
L(0, t1)

〉
, (S11)

⟨x2(t)⟩ =

〈∫ t

0

dt1∂
2
kxkx

L(0, t1) +

[∫ t

0

dt2∂kx
L(0, t2)

]2〉
, (S12)

⟨y2(t)⟩ =

〈∫ t

0

dt1∂
2
kyky

L(0, t1) +

[∫ t

0

dt2∂kyL(0, t2)

]2〉
. (S13)

Equations (S10) and (S11) yield following expressions for the mean values of x(t) and y(t)

⟨x(t)⟩ = µFt+ δr

∫ t

0

dt′⟨[k+(t′)− k−(t
′)] cosϕ(t′)⟩, (S14)

⟨y(t)⟩ = δr

∫ t

0

dt′⟨[k+(t′)− k−(t
′)] sinϕ(t′)⟩, (S15)

respectively. Furthermore, because ϕ0 is random, i.e., its values are homogeneously distributed in [0, 2π), we have
⟨y(t)⟩ = 0 regardless of a specific form of k±(t). For this we need to assume that the rates depend on the particle
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orientation through δW (t) only. Then [k+(t
′)− k−(t

′)] is a function of cosϕ(t′) and can be formally expanded into a
power series in powers of [cosϕ(t′)]. Each term of such series will vanish after it is multiplied by sinϕ(t′) and averaged
with respect to ϕ0 over the interval [0, 2π) due to the orthogonality of sin and cos functions.
Expressions for second moments of x(t) and y(t) are algebraically more involved. To present them in a compact

form, we introduce the notation

∆k(t) = k+(t)− k−(t). (S16)

Then the second central moments, calculated based on the formulas (S10)-(S13) are given by

⟨x2(t)⟩ − ⟨x(t)⟩2 = 2Dt+ (δr)2
∫ t

0

dt′⟨[k+(t′) + k−(t
′)] cos2 ϕ(t′)⟩+ (S17)

+ (δr)2
∫ t

0

dt1

∫ t

0

dt2 [⟨∆k(t1) cosϕ(t1)∆k(t2) cosϕ(t2)⟩ − ⟨∆k(t1) cosϕ(t1)⟩⟨∆k(t2) cosϕ(t2)⟩] ,

⟨y2(t)⟩ − ⟨y(t)⟩2 = 2Dt+ (δr)2
∫ t

0

dt′⟨[k+(t′) + k−(t
′)] sin2 ϕ(t′)⟩+ (S18)

+ (δr)2
∫ t

0

dt1

∫ t

0

dt2⟨∆k(t1) sinϕ(t1)∆k(t2) sinϕ(t2)⟩.

Summing these equations, we get the variance of the particle position at time t:

⟨r2(t)⟩ − ⟨r(t)⟩2 = 4Dt+ (δr)2
∫ t

0

dt′⟨[k+(t′) + k−(t
′)]⟩+ (δr)2

∫ t

0

dt1

∫ t

0

dt2⟨∆k(t1)∆k(t2) cos[ϕ(t2)− ϕ(t1)]⟩

(S19)

− (δr)2
∫ t

0

dt1

∫ t

0

dt2⟨∆k(t1) cosϕ(t1)⟩⟨∆k(t2) cosϕ(t2)⟩.

B. Results for activated rates and arbitrary k
(0)
±

Let us factorize k±(t) as products of rates k
(0)
± describing a force-free active propulsion and of the force-dependent

part as

k±(t) = k
(0)
± exp

[
±Fδr cosϕ(t)

2kBT

]
. (S20)

Then Correlation functions under the integrals in Eqs. (S14) and (S19) then can be evaluated recalling an integral
representation of the modified Bessel functions of the first kind [4]:∫ 2π

0

dϕ

2π
cos(nϕ) exp[z cos(ϕ)] = In(z), (S21)

where n is an integer, z is a real number, and In(.) denotes the modified Bessel function of the first kind of order n [4].
Using Eq. (S21) and the antisymmetry I1(−z) = −I1(z), we get

⟨k±(t) cosϕ(t)⟩ = ±k
(0)
± I1

(
Fδr

2kBT

)
, (S22)

which yields the explicit results for the mean coordinate x(t). It reads

⟨x(t)⟩ =
[
µF + δr(k

(0)
+ + k

(0)
− ) I1

(
Fδr

2kBT

)]
t. (S23)

Let us now evaluate all terms in on the right-hand side of Eq. (S19). The mean value under the integral over t′

follows from the formula (S21):

⟨[k+(t′) + k−(t
′)]⟩ = (k

(0)
+ + k

(0)
− ) I0

(
Fδr

2kBT

)
. (S24)
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Mean values ⟨∆k(tj) cosϕ(tj)⟩, j = 1, 2 follow from Eq. (S22), we get

⟨∆k(t1) cosϕ(t1)⟩⟨cos∆k(t2)ϕ(t2)⟩ = (k
(0)
+ + k

(0)
− )2 I21

(
Fδr

2kBT

)
. (S25)

Explicit evaluation of the correlation function ⟨∆k(t1)∆k(t2) cos[ϕ(t2) − ϕ(t1)]⟩ will be performed first assuming
t2 > t1 ≥ 0. Then we decompose the process ϕ(t) into its initial value and increments:

ϕ(t1) = ϕ1 + ϕ0, (S26)

ϕ(t2) = ϕ2 + ϕ1 + ϕ0, (S27)

where ϕ1 =
√
2Dr

∫ t1
0

dt′ξr(t
′), and ϕ2 = ϕ(t2)− ϕ(t1) =

√
2Dr

∫ t2
t1

dt′ξr(t
′). Accordingly, increments ϕj , j = 1, 2, are

independent zero-mean Gaussian random variables with variances 2Dr∆tj , where ∆t1 = t1, and ∆t2 = t2 − t1. The
probability density function for the increment ϕj is given by

p(ϕj) =
1√

4πDr∆tj
exp

(
−

ϕ2
j

4Dr∆tj

)
, j = 1, 2. (S28)

Furthermore, the initial value ϕ0 is homogeneously distributed in the interval [0, 2π).
The difference ∆k(tj), Eq. (S16), depends on ϕ(tj). To make this dependence explicit, we introduce the auxiliary

function κ defined as

κ(ϕ1 + ϕ0) = ∆k(t1), (S29)

κ(ϕ2 + ϕ1 + ϕ0) = ∆k(t2). (S30)

The correlation function ⟨∆k(t1)∆k(t2) cos[ϕ(t2)− ϕ(t1)]⟩ then is written as

⟨∆k(t1)∆k(t2) cos[ϕ(t2)−ϕ(t1)]⟩ =
∫ +∞

−∞
dϕ2 p(ϕ2) cos(ϕ2)

∫ +∞

−∞
dϕ1p(ϕ1)

∫ 2π

0

dϕ0

2π
κ(ϕ2+ϕ1+ϕ0)κ(ϕ1+ϕ0). (S31)

The auxiliary functions κ(.) and their product κ(ϕ2 + ϕ1 + ϕ0)κ(ϕ1 + ϕ0) are 2π-periodic functions of ϕ1. Hence
the result of the integration of this product with respect to ϕ0 over a period does not depend on ϕ1. This simplifies
the expression for the correlation function:

⟨∆k(t1)∆k(t2) cos[ϕ(t2)− ϕ(t1)]⟩ =
∫ +∞

−∞
dϕ2 p(ϕ2) cos(ϕ2)

∫ 2π

0

dϕ0

2π
κ(ϕ2 + ϕ0)κ(ϕ0). (S32)

In this equation, the result of integration
∫ 2π

0
dϕ0κ(ϕ2+ϕ0)κ(ϕ0)/2π, is a 2π-periodic function of ϕ2. Let us represent

this function by its Fourier series ∫ 2π

0

dϕ0

2π
κ(ϕ2 + ϕ0)κ(ϕ0) =

+∞∑
n=−∞

cne
inϕ2 , (S33)

with coefficients

cn =

∫ 2π

0

dϕ2

2π
e−iϕ2n

∫ 2π

0

dϕ0

2π
κ(ϕ2 + ϕ0)κ(ϕ0), (S34)

which we evaluate explicitly. To this end, we first perform the integration with respect to ϕ2 using Eq. (S21) and the
identity In(−z) = (−1)nIn(z) valid for integer n and real z [4]. After this we get∫ 2π

0

dϕ2

2π
e−iϕ2nκ(ϕ2 + ϕ0) = eiϕ0n

[
k
(0)
+ − (−1)nk

(0)
−

]
In

(
Fδr

2kBT

)
. (S35)

Next, we integrate this result multiplied by κ(ϕ0) with respect to ϕ0 and get the final expression for cn:

cn =
[
k
(0)
+ − (−1)nk

(0)
−

]2
I2n

(
Fδr

2kBT

)
. (S36)
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The above procedure can be carried out similarly for the case t1 > t2, giving us the final result

⟨∆k(t1)∆k(t2) cos[ϕ(t2)− ϕ(t1)]⟩ =
1

2

+∞∑
n=−∞

(cn−1 + cn+1) e
−n2Dr|t1−t2|. (S37)

Integration of this formula with respect to t1 and t2 is performed using∫ t

0

dt1

∫ t

0

dt2e
−n2Dr|t1−t2| =

2

n4D2
r

(
e−n2Drt − 1

)
+

2t

n2Dr
, (S38)

for n ̸= 0.

The n = 0 term of the series (S37) is time-independent and equal to (k
(0)
+ + k

(0)
− )2 I21

(
Fδr
2kBT

)
. In the expression for

the variance (S19) it is exactly compensated by the second term on the right-hand side of (S19), see Eq. (S25).
Summing up, for the variance of r(t) we obtain the exact expression

⟨r2(t)⟩ − ⟨r(t)⟩2 =

[
4D + (δr)2(k

(0)
+ + k

(0)
− ) I0

(
Fδr

2kBT

)]
t+ (S39)

+ (δr)2
∑
n ̸=0

[k
(0)
+ + (−1)nk

(0)
− ]2

[
I2n−1

(
Fδr

2kBT

)
+ I2n+1

(
Fδr

2kBT

)](
e−n2Drt − 1

n4D2
r

+
t

n2Dr

)
.

In agreement with discussion in the main text, this results can be expressed in terms of mean active velocity and
active diffusivity of an un-forced active dynamics: Furthermore, identifying

v(0)a = δr(k
(0)
+ − k

(0)
− ), (S40)

D(0)
a =

(δr)2

2
(k

(0)
+ + k

(0)
− ). (S41)

We obtain

⟨r2(t)⟩ − ⟨r(t)⟩2 =

[
4D + 2D(0)

a I0

(
Fδr

2kBT

)]
t+ (S42)

+ 4

(
D

(0)
a

δr

)2 ∑
n even,n̸=0

[
I2n−1

(
Fδr

2kBT

)
+ I2n+1

(
Fδr

2kBT

)](
e−n2Drt − 1

n4D2
r

+
t

n2Dr

)
+

+ (v(0)a )2
∑
n odd

[
I2n−1

(
Fδr

2kBT

)
+ I2n+1

(
Fδr

2kBT

)](
e−n2Drt − 1

n4D2
r

+
t

n2Dr

)
.

C. Weak-force approximation

In the weak-force (pN and less) limit, Fδr/2kBT < 1, we expand the Bessel functions in above equations. Namely,
we use [4] I0(z) = 1 + z2/4 + O(x4), and I1(z) = I−1(z) = z/2 + O(x3). Higher order Bessel functions yield higher
powers of the ratio (Fδr/2kBT ) and can be neglected.
As for mean values, we get

⟨x(t)⟩ =
[
µ+

(δr)2

4kBT
(k

(0)
+ + k

(0)
− )

]
Ft. (S43)

The variance (S39) is given by

⟨r2(t)⟩ − ⟨r(t)⟩2 =

{
4D + (δr)2(k

(0)
+ + k

(0)
− )

[
1 +

1

16

(
Fδr

kBT

)2
]}

t+

+ (δr)2(k
(0)
+ − k

(0)
− )2

[
2 +

1

4

(
Fδr

kBT

)2
](

e−Drt − 1

D2
r

+
t

Dr

)

+
(δr)2

32
(k

(0)
+ + k

(0)
− )2

(
Fδr

kBT

)2(
e−4Drt − 1

4D2
r

+
t

Dr

)
.

(S44)



6

As it is used in the main text, we express these quantities using Eqs. (S40) and (S41) as follows

⟨x(t)⟩ =

(
µ+

1

2

D
(0)
a

kBT

)
Ft, (S45)

and

⟨r2(t)⟩ − ⟨r(t)⟩2 =

{
4D + 2D(0)

a

[
1 +

(
Fδr

4kBT

)2
]}

t+

+ 2
(v

(0)
a )2

Dr

[
1 +

1

8

(
Fδr

kBT

)2
](

e−Drt − 1

Dr
+ t

)
+

1

8Dr

(
D

(0)
a F

kBT

)2(
e−4Drt − 1

4Dr
+ t

)
.

(S46)

D. Zero-force case: Comparison with experiments

With zero external forcing, we have ⟨x(t)⟩ = ⟨y(t)⟩ = 0, and

⟨r2(t)⟩ − ⟨r(t)⟩2 = 4

[
D +

(δr)2

4
(k

(0)
+ + k

(0)
− )

]
t+ 2

(δr)2

D2
r

(k
(0)
+ − k

(0)
− )2

(
e−Drt − 1 +Drt

)
, (S47)

hence we have

D(0) = lim
t→∞

⟨r2(t)⟩ − ⟨r(t)⟩2

4t
= D +

(δr)2

4
(k

(0)
+ + k

(0)
− ) +

(δr)2

2Dr
(k

(0)
+ − k

(0)
− )2. (S48)

Using definitions (S40) and (S41), we can write these result as

⟨r2(t)⟩ − ⟨r(t)⟩2 =
(
4D + 2D(0)

a

)
t+ 2

(
v
(0)
a

Dr

)2 (
e−Drt − 1 +Drt

)
, (S49)

and

D(0) = D +
D

(0)
a

2
+

(v
(0)
a )2

2Dr
. (S50)

Furthermore, one can assume a specific form of rates k
(0)
± , e.g.,

k
(0)
± = µc

kBT

(δr)2
exp

(
± ∆Gr

2kBT

)
, (S51)

then we have

k
(0)
+ + k

(0)
− = 2

µckBT

(δr)2
cosh

(
∆Gr

2kBT

)
, (S52)

k
(0)
+ − k

(0)
− = 2

µckBT

(δr)2
sinh

(
∆Gr

2kBT

)
, (S53)

and for the diffusivity we obtain

D(0) = kBT

[
µ+

µc

2
cosh

(
∆Gr

2kBT

)]
+

2

Dr

(
µckBT

δr

)2

sinh2
(

∆Gr

2kBT

)
. (S54)

II. MACROSCOPIC LIMIT FOR THE THERMODYNAMICALLY CONSISTENT PROPULSION

By the macroscopic limit we understand transition from time- and length-scales where individual active jumps can
be resolved to the ones where the active velocity can be represented by a continuous process with a non-fluctuating
deterministic part and a stochastic part described by white noise.
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At microscopic scales, every chemical reaction induces a shift of the active particle along its orientation n by δr.
Microscopic reversibility guarantees that there exists also a backward reaction associated with a shift by δr along the
opposite direction −n. Transition rates of the forward (k+) and the backward (k−) processes are detailed balanced
locally

k+(r → r + nδr)

k−(r + nδr → r)
= exp[∆S(r → r + nδr)] , (S55)

where ∆S(r → r + nδr) denotes the entropy produced in the universe after the forward process. It consists of two
terms

∆S(r → r + nδr) =
∆Gr − δW (r → r + nδr)

kBT
, (S56)

the first is an r-independent free energy of the forward reaction, which we parametrize by the ratio

∆Gr =
u

µc
δr, (S57)

where the free energy needed to move a particle by δr is given in terms of a velocity u and mobility µc.

The second term on the right-hand side of (S56) stands for the work done against external mechanical force F (r)
arising from the potential V (r), i.e., F (r) = −∇V (r). Namely, we have

δW (r → r + nδr) = V (r + nδr)− V (r). (S58)

Considering only the terms in the master equation (S3) describing the active propulsion (i.e., disregarding the
passive diffusion), we have

∂tP (r, t) = k+(r − nδr → r)P (r − nδr, t) + k−(r + nδr → r)P (r + nδr, t)

− [k+(r → r + nδr) + k−(r → r − nδr)]P (r, t).
(S59)

Before presenting details of the macroscopic limit, we note that similar limits have been discussed recently e.g. in
Refs. [1–3]. Our approach is similar in spirit to the one from Ref. [2]. Additionally to what is presented in Ref. [2], our
derivation addresses the effects of an external force and also we renormalize the constant part of the active velocity
such that a comparison with the phenomenological ABP model becomes transparent.

A particular choice of the detailed balanced rates k± (e.g., Glauber, Metropolis exponential, etc.) does not alter
the coarsegrained macroscopic description. Let us choose rates for the processes r ⇌ r + nδr in the frequently used
exponential form

k±(r → r + nδr) =
Dc

(δr)2
exp

[
±1

2
∆S(r → r + nδr)

]
, (S60)

where Dc satisfies the fluctuation-dissipation theorem

Dc = µckBT. (S61)

Rate constants for process r − nδr ⇌ r, k±(r − nδr → r), will be given by analogous expressions.

The pre-exponential factor Dc/(δr)
2 in (S60) has units of 1/s. Such coupling of space and time scales ensures that

the limit δr → 0 is nontrivial, i.e., after performing the limit, both microscopic quantities v
(0)
a and D

(0)
a , defined in

Eqs. (10) and (11) in the main text, remain finite and nonzero. The parameter Dc then has a meaning of the diffusion
constant describing fluctuations of the active propulsion at the macroscale. On the other hand, its specific value in the
microscopic theory should be derived from detailed kinetic considerations yielding the transition rates for a specific
type of reaction. Also note that the quantity µc in the prefactor of the rates (S51) possesses the same meaning as µc

in Eq. (S61).
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In the limit δr → 0, we expand the rate constants as follows

k+(r → r + nδr) ≈ Dc

(δr)2

{
1 +

δr

2kBT

(
u

µc
− ∂nV (r)

)
+

(δr)2

8(kBT )2

[(
u

µc
− ∂nV (r)

)2

− 2kBT∂
2
nV (r)

]}
, (S62)

k−(r + nδr → r) ≈ Dc

(δr)2

{
1− δr

2kBT

(
u

µc
− ∂nV (r)

)
+

(δr)2

8(kBT )2

[(
u

µc
− ∂nV (r)

)2

+ 2kBT∂
2
nV (r)

]}
, (S63)

k+(r − nδr → r) ≈ Dc

(δr)2

{
1 +

δr

2kBT

(
u

µc
− ∂nV (r)

)
+

(δr)2

8(kBT )2

[(
u

µc
− ∂nV (r)

)2

+ 2kBT∂
2
nV (r)

]}
, (S64)

k−(r → r − nδr) ≈ Dc

(δr)2

{
1− δr

2kBT

(
u

µc
− ∂nV (r)

)
+

(δr)2

8(kBT )2

[(
u

µc
− ∂nV (r)

)2

− 2kBT∂
2
nV (r)

]}
, (S65)

where we have introduced the directional derivative along the vector n,

∂n = n · ∇ = cosϕ∂x + sinϕ∂y, (S66)

since we have (r + nδr) = (x+ δr cosϕ, y + δr sinϕ),
Introducing expansions (S62)-(S65) into the master equation (S59), where we expand terms P (r ± nδr, t) along

similar lines, gives us the diffusive dynamics along the direction n. The dynamics is governed by the Fokker-Planck
equation

∂tP = LaP, (S67)

with the Fokker-Planck operator

La = −u∂n + µc∂n [kBT∂n − Fn(r, ϕ)] , (S68)

which is expressed using the force projection on the particle orientation:

Fn(r, ϕ) = n·F (r) = −∂nV (r). (S69)

Let us further introduce the standard Fokker-Planck operator for a passive Brownian motion

L = µ∇ · [kBT ∇− F (r)] , (S70)

and the one for the rotational diffusion containing derivatives with respect to the angle ϕ,

Lr = Dr∂
2
ϕϕ. (S71)

Then the Fokker-Planck equation for the joint PDF p(r, ϕ, t) of the particle position r and angle ϕ at time t is given
by

∂tp(r, ϕ, t) = (L+ La + Lr) p(r, ϕ, t). (S72)

Therefore, dynamics of r(t) is governed by the Langevin equations corresponding to the Fokker-Planck equa-
tion (S72):

dr

dt
=
[
u+ µcFn(r, t) +

√
2Dc ξn(t)

]
n(t) + µF (r) +

√
2D ξ(t), (S73)

where the white noise ξn(t) arising from fluctuations in a number of chemical reactions satisfies ⟨ξn(t)⟩ = 0 and
⟨ξn(t)ξn(t′)⟩ = δ(t− t′). It is independent of the white noise of the passive Brownian motion ξ(t) = (ξx(t), ξy(t)) with
⟨ξx(t)⟩ = ⟨ξy(t)⟩ = 0 and ⟨ξi(t)ξj(t′)⟩ = δijδ(t− t′), i, j = x, y. The Langevin equation for the particle position (S73)
is further supplemented by the Langevin equation (S1) giving evolution of particle orientation.

III. POSITION STATISTICS IN MACROSCOPIC LIMIT

In this section, moments of the particle position are studied based on the Langevin equation (S73). First, in the
auxiliary subsection IIIA necessary properties of the process ϕ(t) are summarized, which are ten used in Subsec. III B
to calculate averages discussed in the main text.
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A. Correlation functions in rotational diffusion

To evaluate the diffusion coefficient of a particle, we shall need the following expressions for averages and correlation
functions of cosϕ(t) and sinϕ(t). Their evaluation is based on the fact that ϕ(t) is a Gaussian process, cf. Eq. (S2).
Namely, in the calculations, one can first express all trigonometric functions as sums of complex exponentials and then
perform averages of theses exponentials, where the exponents are Gaussian random variables. Thanks to properties
of the Gaussian process any such calculation reduces to computations of two-time correlation functions via Wick’s
probability theorem.

For the mean values of sinϕ(t) and cosϕ(t) and for a fixed ϕ0 we get

⟨sinϕ(t)⟩ = ⟨sinϕ0⟩e−Drt, (S74)

⟨cosϕ(t)⟩ = ⟨cosϕ0⟩e−Drt, (S75)

respectively. Averages ⟨sinϕ0⟩ and ⟨cosϕ0⟩ over ϕ0 ∈ [0, 2π) are equal to zero hence ⟨sinϕ(t)⟩ and ⟨cosϕ(t)⟩ also
vanish for all t meaning there is no preferred orientation, i.e., ⟨n(t)⟩ = 0.
The following two-time correlation functions shall appear in course of calculations:

⟨cosϕ(t1) cosϕ(t2)⟩ =
1

2
e−Dr|t1−t2|, (S76)

⟨sinϕ(t1) sinϕ(t2)⟩ =
1

2
e−Dr|t1−t2|, (S77)

⟨sinϕ(t1) cosϕ(t2)⟩ = 0, (S78)

⟨cos2 ϕ(t1) cosϕ(t2)⟩ = 0, (S79)

⟨sin2 ϕ(t1) cosϕ(t2)⟩ = 0, (S80)

⟨cos2 ϕ(t1) cos2 ϕ(t2)⟩ =
1

4
+

1

8
e−4Dr|t1−t2|. (S81)

Finally, we shall also use the following result for the four-time correlation function

⟨sinϕ(t1) cosϕ(t1) sinϕ(t2) cosϕ(t2)⟩ =
1

4
⟨sin(2ϕ(t1)) sin(2ϕ(t2))⟩ =

1

8
e−4Dr|t1−t2|. (S82)

B. Moments of the particle position

Projection of the external constant force F = (F, 0) onto a particle orientation n is given by the time-dependent
expression Fn(t) = n(t) ·F = F cosϕ(t), cf. Eq. (S69). The projection appears in both Langevin equations governing
dynamics of coordinates x(t) and y(t). In the equation for x(t) [y(t)], it is multiplied by µc cosϕ(t) [µc sinϕ(t)].
Integrating these equations subject to given initial conditions at t = 0, we obtain

x(t) = x(0) +

∫ t

0

[
µF + µcF cos2 ϕ(t′) + u cosϕ(t′)

]
dt′ +

∫ t

0

[√
2D ξx(t

′) +
√

2Dc ξn(t
′) cosϕ(t′)

]
dt′, (S83)

y(t) = y(0) +

∫ t

0

[µcF cosϕ(t′) sinϕ(t′) + u sinϕ(t′)] dt′ +

∫ t

0

[√
2D ξy(t

′) +
√

2Dc ξn(t
′) sinϕ(t′)

]
dt′. (S84)

Assuming the initial particle position to be at the origin, x(0) = y(0) = 0, and using Eqs. (S74), (S75), (S76), and
(S78), we get the description of average particle motion:

⟨x(t)⟩ =
(
µ+

µc

2

)
Ft, (S85)

⟨y(t)⟩ = 0. (S86)

Calculations of second moments is somewhat more cumbersome, yet it runs along similar lines: averaging x2(t) and
y2(t) is performed with the aid of Eqs. (S74)-(S81). Setting again x(0) = y(0) = 0, the final results of this calculation
assumes the form

⟨x2(t)⟩ =
(
µ+

µc

2

)2
(Ft)

2
+ 2

(
D +

Dc

2

)
t+

(
u

Dr

)2 (
Drt+ e−Drt − 1

)
+

(
µcF

8Dr

)2 (
4Drt+ e−4Drt − 1

)
, (S87)

⟨y2(t)⟩ = 2

(
D +

Dc

2

)
t+

(
u

Dr

)2 (
Drt+ e−Drt − 1

)
+

(
µcF

8Dr

)2 (
4Drt+ e−4Drt − 1

)
. (S88)
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Along x and y directions, diffusive spreading of the probability density function for the particle position is described
by the second central moments ⟨x2(t)⟩ − ⟨x(t)⟩2 and ⟨y2(t)⟩ − ⟨y(t)⟩2. Comparing above equations, we observe that
⟨x2(t)⟩ − ⟨x(t)⟩2 = ⟨y2(t)⟩ − ⟨y(t)⟩2 holds. Hence for the squared deviation of r from its mean we have

⟨r2(t)⟩ − ⟨r(t)⟩2 = 2[⟨x2(t)⟩ − ⟨x(t)⟩2] = 2[⟨y2(t)⟩ − ⟨y(t)⟩2] = 2⟨y2(t)⟩. (S89)

which gives us

⟨r2(t)⟩ − ⟨r(t)⟩2 = 4

(
D +

Dc

2

)
t+ 2

(
u

Dr

)2 (
Drt+ e−Drt − 1

)
+ 2

(
µcF

8Dr

)2 (
4Drt+ e−4Drt − 1

)
. (S90)

In the short-time limit Drt ≪ 1, the exponential functions in Eq. (S90) can be expanded into power series yielding

⟨r2(t)⟩ − ⟨r(t)⟩2 ≈ 4

(
D +

Dc

2

)
t, Drt ≪ 1. (S91)

On the other hand, in the long-time limit the exponentials in Eq. (S90) vanish and we end up with the linear time
dependence

⟨r2(t)⟩ − ⟨r(t)⟩2 ≈ 4

[
D +

Dc

2
+

u2

2Dr
+

(µcF )2

32Dr

]
t− 2

[(
u

Dr

)2

+

(
µcF

8Dr

)2
]
, Drt ≫ 1. (S92)
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