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In this ESI we discuss in detail the derivation of the theory we use in the main text. In

Sec. I we motivate the formulation of the model free-energy functional, paying particular

attention to how our boundary conditions differ from work we published previously [1]. In

Sec. II we explain the model dynamics, and include a discussion on the implementation of

the relaxation function τ (z0, t) introduced in the main text. Finally, in Sec. III we describe

the scaling procedure we use.

I. EQUILIBRIUM THEORY

We describe the liquid crystal network in terms of two key order parameters: one char-

acterising the orientational order of the mesogens and the other specifying the concomitant

volume expansion. The former of these is the driving force in the model. Since only one

species of mesogen responds appreciably to an applied electric field, the other being fully

crosslinked into the network, we suffice by considering only the reorientations of pendant,

dipolar mesogens against a background of immobile cross-linked mesogens. In a previous

publication [2], we carried out molecular dynamics computer simulations indicating that,

upon application of an electric field, the dipolar mesogens generally either (i) reorient to

align with the electric field, perpendicular to the cross-linked mesogens, or they (ii) are

hampered in their orientation due to the (excluded-volume) interactions with the cross-

linked mesogens, remaining along their initial axis or orientation [2]. This motivates us to

construct a two-population model in terms of the order parameter f [−], where 0 ≤ f 2 ≤ 1

is the fraction of electric-field-aligned dipolar mesogens. Note that we write f 2, rather than

f , to ensure a consistent interpretation as a (positive) fraction.

The above suggests a competition between the electric field, quantified by the field

strength H [J/m3][3], favouring reorientation of the dipolar mesogens along the electric-

field axis on the one hand, and the (excluded-volume) interactions with the cross-linked

mesogens, favouring the initial axis of orientation, on the other hand. We quantify the

latter by a critical field strength H∗ [J/m
3], implying there is a threshold value for the elec-

tric field strength above which reorientation of the dipolar mesogens becomes energetically

favourable. Such a critical field strength emerges naturally from a more elaborate derivation

of the theory, as discussed in a previous publication [2], and can be shown to depend on

the linear dimensions of the mesogens, their orientational order at the time of crosslinking
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and the crosslinking fraction of the network. Experiments suggest that to overcome this

critical field strength, in practice an electric field of approximately 4-5V/µm is required in

the frequency range of 600-900Hz [4]. The Gibbs free energy per unit reference volume can

then be written as[5]

g1 =
1

2
(H∗ −H) f 2 +

1

4
Bff

4, (1)

where Bf [J/m
3] denotes a bulk-modulus-like coefficient that tempers mesogen reorientation,

as this induces local strains in the polymer matrix. Although such a term is not strictly

required to bound the free energy from below, provided we enforce the condition 0 ≤ f 2 ≤ 1

post hoc, its inclusion ensures that a minimisation of Eq. (1) can produce intermediate order

parameter values 0 < f 2 < 1, representing alignment of a fraction of dipolar mesogens.

Following this, we introduce the volume-expansion order parameter η = (V − V0) /V0 [−],

with V and V0 the current and initial system volume, respectively. Expansion is driven by

the mutually-excluded volume of the mesogens, meaning that an increased fraction of dipolar

mesogens aligned with the electric field, and so perpendicular to the axis of orientation of

the cross-linked mesogens, favours an increase in system volume. Neglecting, for now, the

viscoelastic relaxation of the network (we shall return to this below when we discuss our

model dynamics), and taking ξ [J/m3] as the coupling coefficient, we supplement Eq. (1)

with

g2 = −ξηf 2 +
1

2
Bηη

2. (2)

The bulk-modulus-like term proportional to Bη [J/m3] is now formally required to keep

the free energy bounded from below. We refrain from adding an explicit pressure-volume

contribution, as the role of pressure can effectively be absorbed in model parameters (not

shown).

The total Gibbs free energy follows by integrating g = g1 + g2 over the initial volume of

the system, a thin film extending from z0 = 0 to L0, the initial thickness of the film, to yield

[1]

G

A
=

∫ L0

0

dz0

[
g +

κ2
f

2 (1 + η (z0))
2

(
∂f (z0)

∂z0

)2

+
κ2
η

2 (1 + η (z0))
2

(
∂η (z0)

∂z0

)2
]
, (3)

with A the lateral area of the liquid crystal network. Here, the square-gradient contribu-

tions with the phenomenological coefficients κf [
√

J/m] and κη [
√
J/m] promote smooth
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spatial profiles of the corresponding order parameters. Strictly speaking, such coefficients

derive from local interactions [6], and hence are not fully independent from other model

parameters. Nevertheless, we shall treat them as free parameters for simplicity. The prefac-

tor 1/ (1 + η (z0))
2 makes explicit the geometric significance of the volume-expansion order

parameter, η (z0), in locally smearing out such spatial gradients.

The equilibrium state of the liquid crystal network is recovered by functionally minimising

Eq. (3) with respect to the order parameters f (z0) and η (z0), subject to the following

boundary conditions. At the bottom of the film, all mesogens are clamped to the substrate,

and so remain along their initial axis of orientation regardless of the applied electric field.

Since a lack of reorientation in turn precludes local volume expansion, we impose f (0) =

η (0) = 0.

At the top of the film, we model a diffuse interface of the liquid crystal network with

the ambient medium. We assume that the density varies continuously across the interface,

such that the volume-expansion order parameter η (z0), which is proportional to an inverse

density, assumes its maximum value at z0 = L0. We compute this saturated expansion by

minimising g2, enforcing the restriction 0 ≤ f 2 ≤ 1, which gives η (L0) = ξ/Bη. For the

population order parameter we demand ∂z0f (L0) = 0, prohibiting order parameter flow

through the top of the film. The diffuse interface influences f 2 (z0) through the model

couplings.

This final boundary condition is slightly different from the one we used in our previous

work [1], but turns out to be crucial to recovering three distinct time scales. After all, a

Dirichlet boundary condition such as f (L0) = 1, like we used in Ref. [1], would initialise

the top with an already saturated response, leading to immediate permeation. Although

this was sufficient for our aims in this prior publication, namely the study of permeation,

such an initialisation is evidently ad hoc. The boundary condition we use in this paper does

not suffer from this, as it presupposes no initial response in the absence of an electric field.

Instead, this boundary condition prevents order parameter flow through the top of the film,

beyond which the mesogen response has no physical meaning. Hence it is the more logical

choice for the study of transient dynamics.

This concludes the discussion of our equilibrium theory. Below, in Sec. II, we explain

how we extend this framework to also study the dynamical behaviour of the liquid crystal

network.
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II. RELAXATIONAL DYNAMICS

To describe the temporal evolution of the order parameters, which we treat as non-

conserved [7], the simplest form of dynamical equations describes relaxational dynamics,

according to

∂tf = −Γf
δG

δf
+ θf ,

∂tη = −Γη
δG

δη
+ θη − γ (η − η0) τ (z0, t) .

(4)

Here, Γf [m3/Js] and Γη [m3/Js] denote kinetic coefficients that encompass the dissipative

processes through which the free energy may be lowered by variation of the relative order

parameter. The Gaussian noise terms θf [1/s] and θη [1/s] ensure that the system eventually

approaches the global minimum of the free energy, and that the fluctuation-dissipation

theorem is satisfied [8]. In particular, the Gaussian noise terms enable the system to depart

from its initial configuration, which is marginally stable.

The set of dynamical equations is complemented by a term reflecting the viscoelastic re-

laxation of the polymer network, which we neglected in the previous section. This term, pro-

portional to the phenomenological coefficient γ [1/s2], guarantees that the volume-expansion

order parameter profile, η (z0, t), invariably relaxes back to its initial profile, i.e., the equi-

librium profile it assumes in the absence of an electric field, η0 (z0), as a function of time t.

This presupposes an enforced equilibrium of the model, imposed on top of the free energy

functional of Eq. (3), and is informed by the experiments of Liu, Van der Kooij, and co-

workers [4, 9, 10], and the molecular dynamics computer simulations we reported on in our

previous work [2].

To achieve viscoelastic relaxation of the volume-expansion order parameter, η (z0), in

Eq. (4) it is insufficient to simply write the relaxational term as −γ (η − η0). Although

this indeed induces exponential relaxation of the volume-expansion order parameter profile,

this relaxation occurs toward an equilibrium profile satisfying γ (η − η0) = Γη
δG
δη
, rather

than toward the initial profile η0 (z0). Although we can resolve this point by making the

relaxational term an increasing function of the time t, such that the relaxational term

dominates in the long-time limit, this introduces a different problem. Namely, if we apply

an alternating electric field to the liquid crystal network, we expect this to eventually result in

a steady-state expansion of the liquid crystal network, as reported in experiments [4, 9, 10].
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However, a relaxational term that increases monotonically with t suppresses any volume

expansion if we wait long enough, rendering a dynamic steady state impossible in the long

term. Thus, we require a more sophisticated relaxation function, τ (z0, t) [s], which locally

keeps track of the deformation history of the liquid crystal network to determine how strongly

a given volume element should relax [1]. This is a highly non-trivial component of the theory,

and although it is not a true memory kernel, it fulfils a similar function.

As the basis for this relaxation function we take τ (z0, t) = t, which describes Gaussian

relaxation. This is the simplest functional form that invariably achieves relaxation of the

volume-expansion order parameter to its initial profile in the long-time limit. To circumvent

the suppression of volume expansion in this limit, we alter this function by following the phi-

losophy that the relaxation of any element of expanded volume, η (z0, t) > 0, is proportional

to how long it has been in the expanded state. Numerically, we implement this through the

recurrence relation

τ (t, z0) = t− 1

η (z0, t)

(
η (z0, t−∆t) [t− τ (z0, t−∆t)]

+ |η (z0, t)− η (z0, t−∆t)| t
)
, t ≥ ∆t, (5)

where ∆t denotes the numerical time increment. This means the relaxation function τ (z0, t)

describes Gaussian relaxation at its core, but is increasingly attenuated the shorter the vol-

ume element in question has been in the expanded state. To account for this, the second

term in Eq. (5) represents the time at which the volume element effectively entered the

current expanded state. We achieve this by performing an average weighted by the magni-

tude of expansion at the previous time step (left-most term in brackets), and the magnitude

of the changes in expansion that have occurred since (right-most term in brackets). This

protocol naturally resets the relaxation function if the liquid crystal network relaxes back

toward its initial configuration, and so permits steady-state oscillations. Although it is

possible to achieve a similar effect using different protocols, we have chosen our approach

under the aspect of simplicity. Our relaxation function τ (z0, t) is uniquely determined by

temporal evolution of the volume-expansion order parameter profile η (z0, t), and represents

a dynamical coupling that goes beyond the free-energetic nature of the Landau theory.

The above enables us to study the dynamical behaviour of the model. Finally, we reduce

the parameter space of the model by introducing a dimensionless scaling.
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III. SCALING PROCEDURE

We scale the theory by introducing the dimensionless volume-expansion order parameter

η̃ ≡ η/η (L0); we do not scale the population order parameter f [−] so that we can explicitly

maintain the constraint 0 ≤ f 2 ≤ 1. Next, we identify H∗ [J/m3] as the relevant energy

scale of the problem, and define the scaled field strength h = (H −H∗) /H∗, as well as the

scaled bulk modulus B̃f = Bf/H∗ and coupling constant ζ = ξ2/BηH∗. Following this, we

scale the spatial coordinate z0 to the reference thickness of the film, z̃0 = z0/L0, from which

the scaled square-gradient coefficients κ̃f = κf/
√
H∗L2

0 and κ̃η̃ = κη/
√

H∗B2
ηL

2
0/ξ

2 follow

naturally.

For the scaling of the dynamical model parameters, we opt to set Γ̃η̃ = 1, and measure

time relative to the evolution of the volume-expansion order parameter η̃. It then follows that

the time scale of the problem becomes t̃ = tB2
ηH∗Γη/ξ

2, and we write the scaled relaxation

function τ̃ = τB2
ηH∗Γη/ξ

2. Upon inserting these scalings into the dynamical equations,

Eq. (4), we read off the effective kinetic coefficient of the population order parameter,

Γ̃f = Γfξ
2/ΓηB

2
η , and the effective coefficient for viscoelastic relaxation, γ̃ = γξ4/B4

ηH
2
∗Γ

2
η.

For the purpose of this paper, we choose parameter values in the broad regime Γ̃f < Γ̃η̃, which

in a previous publication [2] we have shown to be qualitatively in line with the experiments

of Liu and co-workers [4], as well as our own molecular dynamics computer simulations [2].

This establishes the full theory used in the main text, where we drop the tildes for

notational simplicity.
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