Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2022

Submitted to Soft Matter

Supporting Information

Specific Deformation Behavior of Isotactic Polypropylene Film under Multiaxial Stress Field

Ken Kojio^{1,2,3*}, Aya Fujimoto¹, Chigusa Nagano², Shuhei Nozaki²,

Kazutoshi Yokomachi¹, Kazutaka Kamitani¹, Hirohmi Watanabe¹, Atsushi Takahara^{1,2*}

¹Institute for Materials Chemistry and Engineering, ²Graduate School of Engineering, ³WPI-I²CNER, Kyushu University 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan Phone: +81-92-802-2517, Fax: +81-92-802-2518

*Authors to whom correspondence should be addressed.

Sample holder

O ring

Figure S1. Schematic illustration of (a) home-made bulge chamber and (b) various parameters during bulge deformation.

Figure S2 Side view images of the *it* PP films at various strains.

^a Direction of short-axis of refractive index ellipsoid

Figure S3. Polarized high-speed camera images of isotactic polypropylene films with a thickness of 8 μ m at various strains by bulge testing. The three inset images correspond to topography, retardation, and the direction of short-axis of the refractive index ellipsoid from left to right.

Figure S4. Ultra small-angle X-ray scattering (USAXS) patterns at various positions inside bulge hole.