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S1 Key parameters of the model
In the following description of the lock and key assembly model, L is the center position of a Lock-particle. For any
given location around that C is the position of the closest cavity center. Furthermore R is defined as any point on
the rim of that cavity and the bulk part of the Lock-particle. Finally K is the center position of the a Key-particle.

S2 Entropic contribution
S2.1 Single cavity

The free energy ∆G between a hard Key- and a hard (single cavity) Lock-particle has previously been shown to be1

∆G(r)
kBT

=
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0 0≤ r <−(c−RC +RK)
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− ln
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2
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otherwise.

(S1)

Here r = |r|= |K−L|, α =∠PLK and β =∠PLC, where P defines the contact point between the particles, kB is the
Boltzmann constant, and T is the temperature.

S2.2 Multiple cavities

Now we simply extend the above presented expression to include multiple cavities. This is straight-forward as long
as the cavities are mutually non-overlapping, and for the last case in Eq. S1 we get

∆G(r)
kBT

=− ln
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j

1− cos(β j−α j)

2

)
(S2)

where j index the different cavities. As an example, if a Lock-particle has X cavities all of equal size then the
expression simplifies to

∆G(r)
kBT

=− ln
(

X
1− cos(β −α)

2

)
. (S3)

S3 Electrostatic potential
For the electrostatics interactions between lock- and key-particles we use an approach for single-cavity lock-particles2

but extend it to several cavities. The extension is solely based on describing the contributions from each cavity sep-
arately, and as they are treated separately all expressions in the original work2 still applies. The main difference
therefore is the division of space into regions, cf. Fig. S4 in reference2 to our Fig. S1. As our approach treats
the cavities separately, we assume the potential about one cavity to not heavily influence the others. This is a fair
assumption for high ionic strengths which also is assumed in the derivation in the original work2.
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Figure S1 Potential from randomly distributed particles on the surface of a lock -particle (lower-left) and the approximate potential
(lower-middle). The far right lower panel shows the difference between the two approaches. The screening for both figures was
10−5 M. The upper figures illustrates the respective models and the regions.

S3.1 Key-particle in front of Lock-particle cavity

Now we present the electrostatic Yukawa-potential VL(z), from a Lock-particle on the line parallel to c = C−L going
through L, that is a straight line going through the center of the Lock-particle and one of its cavities. Eq. S9 is
an analytic exact expression for the potentials on that line in front of the cavity. In Eq. S9 qL is the charge of the
Lock-particle which is uniformly distributed on its surface-area A described in Eq S4. Also note that κ−1 is the
Debye-length, that ∠RLC and ∠RCL are described in Eqs. S5-S6, ε0 and εr are the permittivitiy of vacuum and the
relative permittivity of the dispersing medium respectively. Eq. S7 describes z as a function of the surface-to-surface
distance d (see Eq. S8).

A =
π

c

(
R3

L +(RC +2c)R2
L− (R2

C− c2)RL− (RC− c)2RC
)

(S4)

cos(∠RLC) =
R2

L + c2−R2
C

2RLc
(S5)

cos(∠RCL) =
R2

C + c2−R2
L

2RCc
(S6)

z =

{
d + c−RC ∀ z > c−RC

−d−RL ∀ z≤−RL
(S7)

d(r,c) =


RC−|r− c|−RK Region I & II

|r|− c+RC−RK Region III

|r|−RL−RK Region IV.

(S8)

There are now two special cases that needs considering: z = 0 or z = c, where a denominator of Eq. S9 is zero. The
first term in Eq. S9 using z→ 0 results in the simplified Eq. S10 whereas the second term using z→ c is results in
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Eq. S11.
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As κ → 0 we use the asymptotic limit

lim
x→0

(
eAx− eBx

x

)
= A−B (S12)

to get an accurate expression for the potential.
The interaction energy between a Lock- and a Key-particle is finally retrieved by using Eq. S9 and the effective charge
of the Key-particle3,4, q∗K = sinh(κRK)

κRK
qK , where qK is the charge of the Key-particle. Thus the interaction-energy is

ULK(z) =VL(z)q∗K .

S3.2 Angular-dependent potential

The full angular-dependent potential is divided into four separate regions, see Fig. S1. In each region the potential
is a linear combination of the potential derived in the previous subsection where the Key-particle is perfectly in
front (VL(zLK(r,c))) and behind (VL(zLK(r,c))) the Lock-particle. Here

zLK(r,c) = d(r,c)+ c−RC (S13)

and

zLK(r,c) =−d(r,c)−RL, (S14)

where the closeted distance to contact is described in Eq. S8. The potential is then described by

VL(r,c) = λ (r,c)VL(zLK(r,c))+(1−λ (r,c))VL(zLK(r,c)), (S15)

where λ (r,c) is defined in the following. In Region I and Region III

λI(r,c) = λIII(r,c) =
cos(∠RCL)− cos(∠LCK)

cos(∠RCL)−1
, (S16)

in Region II

λII(r,c) =
cos(∠RLC)− cos(∠KLC)

cos(∠RLC)−1
, (S17)

and ultimately in Region IV

λIV(r,c) = 0. (S18)

There is a single exception to the previous formulas, in Eq. S8, which is in zLK(r,c) in Region III where d =



√
R2

L + r2−2RLr cos(∠RLC−∠KLC), that is the closest distance to the rim of the Lock-particle.

This model was then compared to the aggregated potential from a random distribution of point charges, see Fig. S1
.

S4 Derivation of number-ratios for assemblies

S4.1 L2 particles

S4.1.1 Chains

In a chain every other particle is a Lock and every other particle is a Key. Thus they each have two bonds with other
particles. The total number of bonds can thus be described by

NTot.Bonds = 2NL = 2NK (S19)

which gives the number ratio
NK

NL
=

1
1
. (S20)

S4.1.2 Diamond lattice

In the suggested diamond lattice every node is a Key and every bond between two such nodes are described by a
Lock. The total number of bonds can thus be described in two ways by

NTot.Bonds = 2NL = 4NK (S21)

which gives the number ratio
NK

NL
=

1
2
. (S22)

S4.1.3 Cubic lattice

In the suggested cubic lattice every node is a Key and every bond between two such nodes are described by a Lock.
The total number of bonds can thus be described in two ways by

NTot.Bonds = 2NL = 6NK (S23)

which gives the number ratio
NK

NL
=

1
3
. (S24)

S4.2 L3 particles - (2D)-hexagonal lattice

In the suggested (2D)-hexagonal lattice every node is a Lock and every bond between two such nodes are described
by a Key. The total number of bonds can thus be described in two ways by

NTot.Bonds = 3NL = 2NK (S25)

which gives the number ratio
NK

NL
=

3
2
. (S26)

S4.3 L4 particles - diamond lattice

In the suggested diamond lattice every node is a Lock and every bond between two such nodes are described by a
Key. The total number of bonds can thus be described in two ways by

NTot.Bonds = 4NL = 2NK (S27)
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which gives the number ratio
NK

NL
=

2
1
. (S28)

S4.4 L6 particles - cubic lattice
In the suggested cubic lattice every node is a Lock and every bond between two such nodes are described by a Key.
The total number of bonds can thus be described in two ways by

NTot.Bonds = 6NL = 2NK (S29)

which gives the number ratio
NK

NL
=

3
1
. (S30)

S5 Excess of Lock-particles
In Fig. S2 we present typical configurations from simulations using different types of Lock- and Keys-particles, in an
excess of the former. The clusters are connected with highly specific bonds yet they naturally display a lower degree
of coordination between the satellites as compared to the opposite case of an excess of key-particles.

S6 Free energy of binding
In Fig. S3 we present a lower limit of the free energy cost to form a cluster centered around a lock with the number
of keys indexed in the legend. This latter number represent the average number of keys per lock in a perfect lattice.
In the figure no electrostatics is accounted for. As already bound keys would prevent future bonds by their simple
presence the true curves would be even higher than the ones displayed, more so for locks with several indentations
than locks with fewer ones. The image indicate, from an entropic perspective, it to be more favourable to form
clusters and lattices based on locks with few indentations to those of more cavities.

S7 Simulation software
The simulation software is released under the GNU Public License and is available at:
https://github.com/bjornstenqvist/beoFaunus.
All code that has been used to produce results for this work is available there as well as an example setup for a
simulation of lock and key particles.
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Figure S2 {(a),(b),(c),(d)} Typical configuration of key-particles in an excess of L{2,3,4,6} particles using RK = {1.6,1.6,1.6,1.4}RL,
c = 2.0RL, and σ = 1.0σ0.
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Figure S3 Analytic free energy (see Sec. S2) (lines) and simulation (stars) free energy between a lock- and a key-particle using a
hard-overlap potential. The free energy is scaled by a factor indicated in the legend, which represent the average number of bound
keys per lock in a perfect lattice. All cavities were located at c = 1.2RL from the lock-particles center, where RL is the lock radius.
The radii of the cavities was RC = RK , where the key particle radius RK = 0.8RL.
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