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I Details of Metadynamics simulations
Reminder of the theory
As described in the main text, Metadynamics (MetaD) is a com-
puter simulation method that can be used to estimate the free
energy landscape (FEL) of a system. Importantly, it is assumed
that this FEL can be written in terms of few Collective variables
(CVs), ζi(r), that depend only on the positions, (r), of particles
and that can distinguish between any two (or more) states of the
system. Different states are represented by minima in the FEL.

In MetaD, the sampling of the phase-space of a system is facil-
itated by the introduction of a history-dependent bias potential
that forces the system to migrate from one minimum of the FEL
to the next one. When just one CV is considered the potential,
constructed as a sum of Gaussians at time t, has the form:

UG(ζ(r), t) =
∑

t′=τG,2τG,...

Bexp
(
− [ζ(r)−ν(t′)]2

2∆2

)
, (S1)

where B,∆ and τg are constants representing the Gaussian
height, width and frequency at which the Gaussians are added,
respectively. ν(t′) = ζ(r(t′)) represents the the value of the CV at
time t′, and t′ < t must be satisfied. If B is large, the free energy
surface will be explored at a fast pace, but the reconstructed pro-
file will be affected by large errors. Instead, if B or τg are small
the reconstruction will be accurate, but it will take a longer time.

The basic assumption of metadynamics is that after a suffi-
ciently long time, lim

t→∞
UG(ζ, t) provides an estimate of the free

energy landscape, F (ζ), modulo a constant. However, since the
potential of the system changes every time a Gaussian is added,
UG(ζ, t) oscillates around F (ζ) at long times. Another method
that ensures that the FEL converges more smoothly is the Well-
Tempered Metadynamics (WTMetaD). In this variant of MetaD,

the height of the Gaussians added is no longer a constant but it
scales at each timestep, so the bias potential is obtained by re-
placing B in Eq. S1 by:

ω =Bexp
[
−UG(ζ(r(t′)), t′)/∆T

]
, (S2)

where ∆T has the dimension of temperature. This parameter is
related to the bias factor (γ = (T +∆T )/T ), which indicates how
fast the Gaussian height decreases in a simulation. The higher the
value of γ, the slower the height decrease. Therefore, γ→∞ rep-
resents normal MetaD simulations and γ = 1 represent ordinary
molecular dynamics (MD) simulations.

The collective variable
Here we define a collective variable (dp, described in the main
text) that can distinguish between planar and non-planar geome-
tries of the DNAns. In practice, dp is obtained from the direction
of each of the dsDNA arms in a nanostar. This is done in the fol-
lowing way: First we compute the position, rcore, of the DNAns
core. This is done by locating the base-pair (bp) closer to the
FJC in each arm (three in total) and calculating the centre of
mass (COM) using the position of the six nucleotides previously
selected. Then, the unitary vectors (ê1, ê2, ê3) pointing from the
core of the molecule to the COM of the bp closer to the sticky end
in each arm, define the direction of the three dsDNA arms.

To compute dp we find two vectors (A and B) that connect the
end of any two arms, for example:

A = ê2− ê1.

B = ê3− ê1. (S3)

These vectors define a plane whose normal can be found as the
cross product n = A×B. Then, the distance dp from this plane

Fig. S1 Metadynamics simulations. First column shows result at a high salt concentration [NaCl]=1 M for n = 2 unpaired nucleotides at the FJC.
From column two to five we show results at [NaCl]=0.15 M for n = 2,3,4 and 5, respectively. Top plots show the time evolution of the collective
variable (dp). In each plot, two curves with different colour are shown. In turquoise we show results for a normal MD simulation without bias (γ = 1)
and the other colour represents results from WTMetaD simulations with γ = 32. Bottom depicts the error analysis on dp as function of the block size.
Insets show the temporal evolution of the Gaussian Height for the WTMetaD
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to the core of the molecule, is given by the projection of any of
the three dsDNA arms (for example ê2) onto the unitary normal
vector:

dp = |ê2 · n̂| . (S4)

The range of our CV is from dp = 0 (for a completely planar
DNAns) to dp . 1. The larger the value of dp the less planar the
molecule. Note that dp cannot be equal to 1 due to the excluded
volume interaction between arms.

The oxDNA model

We used the most recent implementation1 of the oxDNA model
into LAMMPS2 (Large Scale Molecular Massively Parallel Simu-
lator). Briefly, this model describes DNA at the single nucleotide
level by means of a rigid body with additive-pairwise interaction
sites. The potentials involved in the interactions accurately rep-
resent: the hydrogen bonding between complementary bases, the
connectivity of the sugar-phosphate backbone, the excluded vol-
ume between nucleotides and also the stacking, coaxial-stacking
and cross-stacking interactions. The relation between one simu-
lation unit (SU) in the oxDNA and the international system (SI)
units is: mass (M = 100AMU = 1.66× 10−25kg), temperature
(T = 3000K), length (Ls = 8.518×10−10m), energy (εs = kBT =
4.142× 10−20J) and force (F = εs/Ls = 4.863× 10−11N). The
simulation time τLJ = Ls

√
M/εs = 1.7ps, comes naturally from

the above quantities and it is employed to define a constant inte-
gration timestep δt= 0.001τLJ .

Implementation

Here we use the plumed3 library implemented in LAMMPS to
perform Well Tempered Metadynamics of a three-armed DNA
nanostar simulated with the oxDNA model. The sequence of this
molecule is given in Table 1 of the main text and it corresponds to
the one with n= 2 unpaired nucleotides at the FJC. We also per-
formed WTMetaD to molecules with n= 3,4 and 5 (see Fig. S1).
The parameters used in the WTMetaD simulations are: γ = 32,
B = 0.5kBT , ∆ = 0.05σ and τg = 4× 105 timesteps. Each simu-
lation was run for a total of 1.6×109 timesteps.

As described above, by choosing carefully the values of the bias
factor (γ) in the WTMetaD we can compare results from differ-
ent methods, namely, MD (γ = 1) and WTMetad (γ = 32). Top
plots in Fig. S1 show the time evolution of dp. We observe that
in simulations without the bias potential (shown in turquoise) dp
does not explore the full range of possible values (dp is defined
in the interval [0,1]). The maximum value reached is ∼ 0.65, it
only happens briefly and for n = 5. Instead, in MetaD the CV is
able to explore the whole range of configurations. Bottom plots
show the error block analysis of the FEL, which is used to assess
the convergence of the WTMetaD simulations. As expected, the
error increases with the block size until it reaches a plateau in
correspondence of a dimension of the block that exceeds the cor-
relation between data points.

II Coarse-Grained Molecular Dynamics Simu-
lations

Molecular dynamics simulations are performed using the model
described in the main text. Here we refer to the details on those
simulations. The Langevin integration of the system was carried
out using LAMMPS in an NVT ensemble by a standard velocity-
Verlet algorithm with integration time-step δt= 0.01. The position
of particles in the system obeys the following equation

m
d2r
dt2

=−ξ dr
dt
−∇U +

√
2kBTξΛ(t), (S5)

where m= 1 is the mass of the particle, r represents its position.
ξ is the friction and Λ(t) is the white noise term with zero mean
which satisfies 〈Λα(t)Λβ(s)〉 = δαβδ(s− t) along each Cartesian
coordinate represented by the Greek letters. The total potential
field experience by a particle is U and depends on the interactions
set for a particular system.

In our coarse-grained model, each DNA nanostars is repre-
sented by a rigid body made up by ten particles. Seven beads
account for the DNAns core and their excluded volume is mod-
elled via a truncated and shifted Lennard-Jones (LJ) potential:

ULJ (r) = 4ε
[(

σ

r

)12
−
(
σ

r

)6
+ 1

4

]
, (S6)

if r < 21/6σ, and ULJ (r) = 0 otherwise. Here σ = 2.5 nm repre-
sents the diameter of a spherical bead, ε = 1.0 parametrises the
strength of the repulsion and r is the Euclidean distance between
the beads.

Patches are placed at a distance of 2.5σ from the core of the
molecule and on the surface of the outermost bead along each
arm. The sticky ends interaction, responsible for holding two
DNAns together, is modelled by a Morse potential:

Um(r) = εm

[
e−2α0(r−r0)−2e−α0(r−r0)

]
, (S7)

Fig. S2 Left panel shows schematic representation of two bound DNAns.
The hard-sphere repulsion between beads forces patches to remain at a
minimum distance of 0.12 σ. Right panel shows the plot of the morse
potential used in simulations to set the attraction between patches (ob-
tained from Eq. S7 with εm = 25.0kBT , α0 = 14σ−1 and r0 = 0). Al-
though the equilibrium distance between patches is set to zero, the min-
imum distance allowed by the excluded volume of the beads sets the
energy Um(r = 0.12σ) ∼ 10 kBT (red dashed lines).
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(a)                              (b)                            (c)                            (d)

(e)                             (f)                             (g)                            (h)

Fig. S3 Time evolution of different quantities computed from simulations of networks with planar (dp = 0, top panels) and non-planar (dp = 0.6,
bottom panels) molecules at a fixed volume fraction ρ = 0.01. Different colours represent different temperatures (quoted in units of ε/kB). (a,e)
show examples of trajectories obtained during the network formation. The curves represent the number of contacts Nc at a given time t. In order to
compute the fraction of connected patches ϑ(t), we have to multiply Nc by the normalization factor 2/Nf . (b,f) Log-linear plot of the autocorrelation
function of Nc(t) computed from Eq.S9. Dots represent results from simulations and lines are a fit to an exponential decay, with decay constant τc.
(c,g) show log-log plots of the MSD averaged over all the molecules in the system. (d,h) Radial distribution function averaged over configurations at
long times (when the network is formed).

for r < Rc. Here, r represents the distance between patches of
two adjacent nanostars, r0 = 0 is their equilibrium distance and
Rc = 0.2σ is the cut-off distance of attraction. The amplitude of
the potential is set to εm = 25.0kBT and α0 = 14σ−1 controls
the width of the potential. These parameters were chosen to en-
sure that during the simulation any of the three arms of one ns
can hybridize with any (but only one) of the arms of another
ns. Importantly, the centre of a patch is placed at the edge of
the last bead forming a dsDNA arm, i.e., at a distance of 0.5 σ

from the centre of that bead. Since the hard-sphere repulsion
of beads (set by the LJ potential in Eq. S6 ) covers a radius of
(21/6σ)/2 = 0.56σ, we expect hybridized patches to be at a min-
imum distance of ∼ 0.12σ. Therefore, the binding energy felt by
hybridized patches is ∼ 10kBT (see Fig.S2), in agreement with
the activation energy Ea mentioned in the main text.

It is worth mentioning here that in the CG model we quote time
in units of τBr, the Brownian time, which is proportional to the
time needed for a DNA bead to diffuse its own size. Finally, we
note that the total excluded volume (V1) of one DNAns is given
by the sum of the volume of all its structural beads:

V1 = 7πσ
3

6 (S8)

In all our simulations the initial configuration is obtained by
placing N nanostars in a cubic simulation box of length L = 40σ
and with periodic boundary conditions. The volume fraction of
this system is ρ = NV1/L

3. We set εm = 0 so nanostars cannot
hybridized and we equilibrate the system for 5×105 τBr. We then
turn on the attraction between patches and record the evolution

of our system for 106 τBr. Results for planar and non-planar
nanostars at different temperatures are shown in Fig. S3.

III Network formation at fixed concentration
Melting curve

In the main text we show the melting profiles 〈ϑ〉 as a function of
the temperature for the system at ρ = 0.01 (Figure 3(a)). This is
obtained by averaging over the last 2 105 τBr of the trajectories,
the number of contacts Nc(t) (multiplied by the normalization
factor 2/Nf). Examples are shown in Figs. S3(a,e). It is clear
that all the samples start from an equilibrated configuration of
unconnected nanostars (Nc(0) = 0); after turning on the attrac-
tion between patches the system evolves to a new steady state
where a network is formed. The higher the temperature the more
unconnected the stars and the smaller the value of < ϑ >.

The autocorrelation function

From the trajectory of Nc at long times, it is also possible to com-
pute the time for network reconfiguration (τc). This is done by
first finding the autocorrelation function of Nc(t), which in the
discrete case has the form:

c(t) =
∑tf−t′
t=0 (Nc(t)−µ)(Nc(t+ t′)−µ)∑tf

t=0(Nc(t)−µ)2
, (S9)

where tf is the total number of time data points, t′ is the lag time
and µ is the mean of the data. Results at different temperatures
are shown in Figs. S3(b,f). The autocorrelation function follows
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an exponential decay c(t) ∝ e−t/τc , from which τc is computed.
In the main text we show τc as function of T in Figure 3(b).
We also note that, as expected, the data at lower temperatures
has larger correlations. This is in agreement with the MSD plots
shown in Figs. S3(c,g), where the system at lower temperatures
has a smaller mobility.

IV Structural analysis
The radial distribution function
The structure of our networks is analysed by computing the ra-
dial distribution function (RDF) of beads at the core of the DNA
nanostars:

g(r) = 1
4πρavM

M∑
i=1

M∑
j 6=i
〈δ(|rij − r|)〉, (S10)

where ρav = N/L3 is the averaged density of core beads in
the simulation, rij represents the distance between the cores of
molecules i and j. The sum counts the number of DNAns cores
that are at a distance r.

In our simulations at fixed ρ= 0.01 there is a total of N = 175
nanostars (and core beads). We compute g(r) using the wrapped
coordinates in the following way: (i) First, we choose the M core
beads that are inside an sphere of radius Rselect = L/4 with cen-
tre at the origin of the box. (ii) We loop over each one of this M
particles, and we count the number of core beads neighbours that
are at a distance r. This search radius can cover up to a distance
L/4 and in the count we consider all the core beads in the simula-
tion (not only the M selected in (i)). (iii) We use this information
in Eq. S10 to compute g(r). It is worth noting here that we repeat
this procedure to compute g(r) in all the configurations in the
steady state (at long times and when ϑ(t) has reached a plateau)
and we take the average over these configurations.

Figs. S3(d,h) show the average RDF obtained at different tem-
peratures for planar and non-planar molecules, respectively. In
both cases, g(r) shows a maximum located near to 5σ, corre-

Fig. S 4 Number of connected nanostars in the largest cluster of the
network (normalized by the total number of DNAns) as function of the
temperature for planar (dp = 0, in blue) and non-planar (dp = 0.6, in
orange) molecules. All the data shown here correspond to simulations
performed at ρ= 0.01

sponding to the average distance between the cores of two bound
nanostars. As temperature increases, the hight of this maximum
decreases, meaning that there are less contacts between nanos-
tars.

Largest cluster in the network
Figures S4 shows the size of the largest cluster in the networks
(normalized by the number of nanostars N=175) made of either,
planar or non-planar molecules. Over the whole range of temper-
atures explored, the size of the largest cluster (Max(Cs)) is larger
in the case of networks made out of planar molecules.

V Varying dp
In the main text we show the fraction of connected DNAns 〈ϑ〉

and the relaxation time τc as function of the planarity (dp), when
simulations are performed at a fixed temperature (T = 1.0ε/kB)

(a)                           (b)                          (c)
Fig. S5 Time evolution of different quantities computed from simulations of DNAns with different degree of planarity at ρ= 0.01 and fixed temperature
T = 1.0ε/kB . Different colours represent different planarity: from dp = 0.1 to dp = 0.9. In orange we show results for dp = 0.6, the one used so far
as non-planar in the main text and ESI. (a) shows trajectories obtained during the network formation. The curves represent the number of contacts
Nc at a given time t. (b) Log-linear plot of the autocorrelation function of Nc(t) computed from Eq.S9. Dots represent results from simulations and
lines are a fit to an exponential decay, with decay constant τc. (c) Radial distribution function averaged over configurations at long times (when the
network is formed). Main plot shows results for dp≤ 0.5 and inset shows results for dp > 0.5.

Journal Name, [year], [vol.],1–8 | 5



(a)                              (b)                            (c)                             (d)

dp=0  dp=0.6

dp=0  dp=0.6

Fig. S6 Results from simulations of planar (dp = 0) and non-planar (dp = 0.6) nanostars at a fixed temperature (T = 1.0ε/kB) and at different
concentrations. (a) Largest connected component as function of volume fraction. Circles and squares represent results at dp = 0 and dp = 06,
respectively. Lines are a guide to the eye. (b)-(d) compare results at ρ = 0.01 and ρ = 0.06. (b) shows trajectories obtained during the network
formation. The curves represent the fraction of contacts at a given time t. (c) Radial distribution function averaged over configurations at long times
(when the network is formed). (d) Network diagrams (left) and histogram (right), showing the connectivity between planar (red) and non-planar
(purple) DNAns at ρ= 0.06.

and concentration (ρ = 0.01). Here we provide the full trajecto-
ries from which these results were obtained. Fig. S5(a-b) show
the temporal evolution of Nc(t) and c(t). We observe that as
dp increases, more contacts between DNAns are formed and the
contacts-correlation is larger. The RDF in Fig. S5(c) shows that
the two local maxima located at r ∈ [6,8] are developed when dp
reaches values ∈ [0.5,0.6]. At higher values of dp, the amplitude
of g(r) at these local maxima shrinks, and the amplitude of the
global maximum (at r close to 5) increases. This is consistent
with the increase in the number of box-like structures observed
in the network diagrams of Fig. 5 in the main text. In the ex-
treme case dp = 0.9, one local maxima appears at particular small
values of r < 5. This is in agreement with the structure made by
four DNAns and depicted in the snapshot of Fig. 5(d) in the main
text and for which DNAns connect with a bending angle φ∼ 20°,
as shown in Fig. 6(c).

VI Green-Kubo relations
The autocorrelation function (G(t)) is defined as:

G(t) = L3

3kBT
∑
α6=β

Pαβ(0)Pαβ(t) (S11)

where Pαβ represents the out-off diagonal component (Pxy , Pxz
and Pyz) of the stress tensor. Results from long simulations
(1.6× 106τBr) are shown in Fig. 4(c) of the main text. The
autocorrelation was computed using the multiple-tau correlator
method described in reference4 and implemented in LAMMPS
with the fix ave/correlate/long command. This computation en-
sures that the systematic error of the multiple-tau correlator is
always below the level of the statistical error of a typical simula-
tion (see LAMMPS documentation).

The viscosity (η) of the system is then obtained by computing
the following integral

η =
∫ t→∞

0
G(t)dt. (S12)

in practice we compute the numerical discrete integral of the
curves in Fig. 4(c). We obtained the viscosity in simulation units
for planar (ηp = 573 kBTτBr/σ

3) and non-planar (ηnp = 29

kBTτBr/σ
3) networks at ρ = 0.01. To convert these results to

real units we use σ = 2.5 nm, kBT = 4.11 pN ·nm and the Brow-
nian time:

τBr = σ2/D

= σ2/µskBT

= 3πηsσ3/kBT.

(S13)

Assuming that the solvent is water (with viscosity ηs = 1 mPa ·
s) we obtain τBr = 36 ns. Therefore, the viscosities of the two
networks map to ηp = 5.5Pa ·s and ηnp = 0.28Pa ·s.

VII Varying concentration
Up to now, we have presented results from simulations per-

formed at a constant volume fraction ρ = 0.01. In this section,
we investigate the effect of increasing concentration for networks
made of planar and non-planar nanostars. Without loss of gener-
ality we choose dp = 0.6 for the non-planar case. First, we com-
pute the size of the largest connected component of the network
(Max(Cs)). When Max(Cs)= N , there is only one cluster in the
system that is formed by the connection of all DNAns. In contrast,
when the value of Max(Cs)<N , nanostars are split into clusters.
In Fig. S6(a) we report the value of Max(Cs) obtained from simu-
lations at different volume fractions, note that the results are nor-
malized by the number of nanostars at each concentration. We
observe that as ρ increases, the fraction of nanostars connected
to the largest cluster also grows, for both planar and non-planar
molecules. However, the value of Max(Cs) is consistently lower
in the non-planar case. At ρ= 0.06, most of the nanostars are part
of a single cluster regardless their planarity. In the following, we
focus in results obtained at this value of ρ, but the same general
results were obtained at different volume fractions.

In Fig. S6(b) we corroborate that at a fixed volume fraction
(either ρ = 0.01 or ρ = 0.06), the equilibrium value of the frac-
tion of contacts (θ) is larger for non-planar nanostars. The RDF
is shown in Fig. S6(c), we observe that although the height of the
peaks has decreased with the concentration, the region at which
the maxima appear is conserved (compare blue and purple, or
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orange and red). Finally, Fig. S6(d) shows the network diagrams
obtained for both designs. For the non-planar case a few small
clusters appear, indicating a slightly lower connectivity than the
planar case. The histogram depicting the frequency of the nanos-
tars with certain degree of connection is also shown. As it can
be seen, the number of DNAns fully connected (deg(v) = 3) is
larger for the non-planar molecules. This is all in agreement with
the discussion in the main text, where we show results mainly for
ρ= 0.01.

VIII Non-rigid model

In the discussion so far, it is clear that the planarity of the DNAns
plays a major role in determining the geometry and topology of
DNA hydrogels, and in consequence, the planarity also deter-
mines their viscoelastic properties. However, one may wonder if
this result could be somehow related to the fact that we use rigid
bodies to represent DNAns in our coarse-grained model. Here we
first introduce a coarse-grained model of DNAns with additional
degrees of freedom, and then we use it to prove that our results
hold when we allow small fluctuations of the angle αij between
the dsDNA arms of individual nanostars.

(a)                              (b)                    (c)

I

J

K

L

Fig. S7 Sketch of the interactions in the coarse-grained non-rigid model.
(a) shows the particles used: beads (red) and patchy-beads (blue with
cyan patches). Lines represent the harmonic bonds connecting two beads.
(b) The planarity of the model is controlled with an improper dihedral.
(c) The three type of angle interactions used to give structure to the
DNA nanostars.

The non-rigid model of DNAns is depicted in Fig. 7 and it can
be seen as a generalization of the model used in the main text.
It consists of four beads (depicted in red) forming the core of
the molecule, and three beads (depicted in blue) with a patch
attached to their edge (depicted in cyan). Each of these patchy-
beads is integrated as a rigid body. All beads have an excluded
volume of 1σ modelled with the LJ potential in Eq. S6. The at-
traction between patches is modelled with the Morse potential in
Eq. S7. Neighbouring beads are connected via a harmonic poten-
tial:

Ubond = εbond(r− r0)2, (S14)

where r0 = 1.1224σ is the equilibrium distance between beads
and εbond = 300kBT holds beads in place and only allows for
small fluctuations around r0.

We use an improper dihedral (called umbrella style in
LAMMPS) to have control over the planarity of the DNAns. The

potential representing this interaction has the form:

Uimp =
εimp

2 ( 1
sin(w0) )2[cos(w)− cos(w0)]2, for w0 6= 0°,

= εimp[1− cos(w)] for w0 = 0°, (S15)

where w is the angle between the IL axis and the IJK plane in
Fig. 7(b). εimp = 300kBT is the stiffness of the potential imposing
an equilibrium angle w0. For planar molecules we set w0 = 0° and
for non-planar molecules we set w0 = 87°, which corresponds to
dp ∼ 0.6.

The angle interactions are sketched in Fig. 7(c): α represents
the angle between any two arms of a nanostar, β is the angle used
to align the beads forming a single dsDNA arm, and γ is the angle
setting the alignment of the patch with the dsDNA arm. Note that
a total of nine angles are needed (3 of each type) to represent
a single DNAns. All the angle interactions are modelled by har-
monic potentials with equilibrium values α0 = 120°, β0 = 180°

and γ0 = 180° to resemble the structure of a DNAns. Because
each of the dsDNA arms is 20− 30 base-pairs long, smaller than
lp = 150 bp (the persistence length of DNA), we expect arms to be
straight, and therefore, we set εβ = 300kBT . We decided to set
εγ = 300kBT to allow for small fluctuations of the alignment of
the patches with the arm. Recall that this choice provides a natu-
ral distribution of bending angles (φ) at the place of hybridization
between two DNAns (see Fig. 6 of the main text). To study the
impact of the fluctuation of the angles between arms within a
single DNAns, we use two different values of εα. At high values
(εα = 300kBT ), we expect a similar behaviour to the rigid ana-
logues of nanostars studied in the main text. On the other hand,
for small values of εα, nanostars fluctuate around the Y-shaped
conformation in a qualitatively compatible way with the confor-
mations found in simulations with the oxDNA model for the pla-
nar design (with n = 2 at [NaCl]=0.15 M, see for instance Sup-
plementary Movie 2). In practice, we performed simulations with
the non-rigid model using w0 = 0° (planar), and we decreased
the value of εα until we observed that for εα = 6kBT , nanostars
are able to deform into other conformations.

In Fig. S8 we show results comparing the different models:
rigid (used in the main text), non-rigid with εα = 300kBT and
non-rigid with εα = 6kBT . As we expect, the two first models
produce outcomes that are very similar. This is particularly truth
for the planar DNAns, where the red and orange curves are very
close in Panels (a)-(d). For the non-planar case, curves in blue
and cyan deviate a little bit. We attribute this to the fact that
w0 = 87° doesn’t provide exactly the value of dp = 0.6. We also
note that for the non-rigid model the RDF shows a shift of the
position of the local maxima.

When we compare the results for the non-rigid model with
the same planarity, the case with εα = 6kBT is more dynamic.
Unsurprisingly, the MSD shows that the mobility is lower when
εα = 300kBT compared to the result for εα = 6kBT . This is also
reflected in the autocorrelation of the stress tensor, where G(t) is
lower for the latter case.

Finally, Panel (e) displays results for the non-rigid model with
εα = 6kBT and it shows that for non-planar molecules, the mobil-
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Fig. S8 Comparison of results from simulations performed at ρ= 0.04, T = 1.0kBT for planar (top panels) and non-planar (bottom panels). Colours
depict results for the rigid model (red and blue), and the non-rigid model with εα = 300kBT (orange and cyan) and εα = 6kBT (gray and green).
(a)-(d) show the fraction of contacts, MSD, G(t) and the RDF, respectively. (e) Comparison of results for planar and non-planar molecules, using the
non-rigid model with εα = 6kBT .

ity is higher (top) and the viscosity is lower (bottom), than those
of the networks formed by planar molecules. This supports the
results obtained with the rigid model and allows us to be confi-
dent that allowing fluctuations of the angle between arms in a
single DNAns, will not change the general results found in the
main text. It would also be interesting to perform additional sim-
ulations (with higher resolution models of DNA) using the meth-
ods described in this manuscript, in order to tune the rest of the
potentials in our non-rigid model.
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