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I. NUMERICAL IMPLEMENTATION

A. Fluid simulation

In this work we use a finite-difference method to solve the equation of motion of the Q-tensor eq. (1), and a lattice
Boltzmann algorithm to solve the fluid equations of motion eq. (3) [1–3]. The viscous and elastic contributions to the
stress tensor in eq. (3) are

Πvisc = 2ηD , (1)

Πel = −pI + QH−HQ−∇Q

(
∂f

∂(∇Q)

)
, (2)

where Dij = (∂jui + ∂iuj)/2 is the symmetric part of the velocity gradient tensor.
Simulations were performed on 2D and 3D lattices of size 180 × 90 and 60 × 60 × 60, respectively, and discrete

space and time steps were chosen as unity. We used periodic boundary conditions for the simulation box and the
system was initialized as u = 0, S = 0.3 and random director field n. We used the following parameter values unless
otherwise stated: λ = 30, Kel = 0.12, ζmax = 0.08, A = 0.08, B = −4.3, C = 4.3, Γ = 0.34, fluid density ρ = 1, bulk
pressure p = 0.25 and viscosity η = 2/3 in lattice-Boltzmann units.

B. Defect tracking and polarization

To detect defect positions on a 2D or 3D grid we use Zapotoky’s defect-finding algorithm [4], which we used
previously to detect disclination lines in active nematic droplets [5]. In two dimensions, this algorithm checks if
a defect is located at the intersection of four lattice sites forming a 2 × 2 square. In three-dimensional systems,
disclination lines are found by repeating the two-dimensional square scan along all three coordinate axis [6]. The
twist-angle | cos(β)| of a disclination is calculated using the local line tangent t and rotation vector Ω. The latter is
calculated by taking the cross product of each pair of directors around the disclination core. To distinguish whether
0 > β > π/2 or π/2 < β < π, we calculate the saddle-splay energy f̄24 = ∇ · [(n · ∇)n− n(∇ · n)], which is negative
for a β > π/2 disclination line segment and positive for a β < π/2 segment [7]. We classified disclination line segments
as twist defects if −0.1 < cos(β) < 0.1 and as +1/2 or −1/2 wedge-type defects if cos(β) < −0.8 or cos(β) > 0.8,
respectively.

C. Torque calculation

To calculate active and elastic torques on defects, we first obtain the hydrodynamical forces Fi from the respective
stress tensor

Fi = ∂jΠij , (3)

where Πij = Πel
ij for elastic forces and Πij = Πact

ij for active forces. The torque Γ on defects is then calculated by
integrating forces in the vicinity of defects,

Γi =

∫
εijkFjrk dV , (4)

where the origin of coordinate system rk is located at the centre of defects. We perform the integration over a circular
domain r < rc around the defect core, where the cut-off radius rc is chosen as the average separation between defects.
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In 3D systems, active and elastic torques acting on disclination line segments are calculated by integrating forces
within a cylindrical domain which extends along the line tangent of disclination lines (see Fig. S6, Fig. 5 b).
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II. SUPPLEMENTARY FIGURES

E C
Horizontal coordinate

0

0.2

0.4

0.6

0.8

1

+
1

/2
 d

e
fe

ct
 p

o
la

ri
za

ti
o
n

(a) (b)

(c) (d)

Normal coordinate

Ta
n
g

e
n
ti

a
l 
fl
o
w

Normal coordinateNormal coordinate

Normal coordinate

Ta
n
g
e
n
ti

a
l 
co

o
rd

in
a
te

FIG. S1: (a) Sharp activity interfaces in 2D systems give rise to qualitatively similar dynamics in the laminar regime as
sinusoidal activity variations. (b) Tangential flows are more strongly confined to the interface giving rise to a slightly different
director profile. (c) In the turbulent state +1/2 defects show strong polarization at interfaces, which vanishes in contractile
and extensile bulk regions. (d) As expected for isotropic active turbulence, in bulk regions there is no average alignment of
the director field , 〈|θ|〉 = π/4. Close to activity interfaces there is a finite average alignment, which decreases with increasing
active stress ζmax.
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FIG. S2: (a) Defect polarization magnitude and direction are calculated based on the time-averaged distribution of defect
orientations p. (b,c) 2D systems with extensile-passive domains (b) or contractile-passive domains (c) with activity profiles
ζ(x) = ζmax(cos(k · x) ± 1) show the same defect polarization as observed in extensile-contractile systems but the magnitude
of defect polarization is slightly lower.
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FIG. S3: (a) Director field (left) and active forces (right) of a +1/2 defect with orientation p at a finite angle α with respect to
an activity gradient ∇ζ (negative sign indicates clockwise rotation). (b) Active forces F act create a torque Γact ∼ p ×∇ζ on
the defect, which reaches a maximum at α = ±π/2 and vanishes for α = 0, π. Active torques thus align +1/2 defects parallel to
activity gradients, which is evident from the stable fixed-point at α = 0. The magnitude of active torque Γmax

act depends on the
specific activity profile in the vicinity of defects, but generally scales with the magnitude of activity gradients, Γmax

act ∼ ζmax.
(c) Director field (left) and elastic forces (right) of a +1/2 defect with orientation p at a finite angle α with respect to planar
boundary conditions set up by the effective anchoring force, favouring normal anchoring on the contractile side and tangential
anchoring on the extensile side of activity interfaces. (d) Elastic forces F el, which are strongest at points of large bend or
splay distortions, create an elastic torque Γel on the defect, which reaches a maximum at α = ±π/2 and gives rise to a stable
fixed point at α = π. Elastic forces thus align +1/2 defects anti-parallel to activity gradients. The magnitude of elastic torque
Γmax
el depends on the specific distortion profile around defects, but generally scales with the magnitude of the elastic energy
fel, Γmax

el ∼ Kel. Active and elastic forces were calculated from Πact and Πel, respectively, using a fixed director field Q on a
2D lattice of size 100× 100.
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FIG. S4: Sharp activity interfaces in 3D systems give rise to qualitatively similar dynamics as sinusoidal activity variations. (a)
The relative density of ±1/2 and twist disclination and (b) the average director field alignment directly follow the spatial vari-
ations in active stress. (c,d) +1/2 defects and twist defects are strongly polarized at active interfaces and show no polarization
in bulk regions.
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FIG. S5: (a,c) Three-dimensional systems featuring contractile-passive domains, ζ(x) = ζmax(cos(k ·x)− 1), are dominated by
passive −1/2 and motile +1/2 disclination line segments, which are polarized in the same direction as in extensile-contractile
systems. (e) The time-averaged distribution of the director field in the turbulent regime shows significant normal alignment
with respect to the gradient direction in contractile regions and tangential alignment in passive domains. (b,d) Extensile-passive
systems with ζ(x) = ζmax(cos(k · x) + 1) contain predominantly twist segments which are polarized at points of large activity
gradients and point towards passive domains. (f) The director field shows tangential alignment with respect to the gradient
direction in extensile domains and normal alignment in passive domains.
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FIG. S6: (a) Director fields of a +1/2 (left) and radial twist disclination (right) with orientation p and an applied activity gra-
dient ∇ζ. While +1/2 disclinations are quasi-2D, the director field around twist disclinations features out-of-plane components
nz. (b) Active forces around +1/2 disclinations (black arrows) are confined to the defect plane (xy) and produce a torque
Γact ∼ p ×∇ζ along the z-axis (pink arrow), which rotates the defect orientation p. Active forces around twist disclinations
feature out-of-plane components Fz (see colorbar), creating an active torque Γact which does not strictly point along the z-
axis. The in-plane defect orientation p is only affected by component Γz

act, while components Γx
act and Γy

act change the overall
direction of the defect line. (c) Active torque Γz

act as a function of angle α between defect direction p and activity gradient
∇ζ for different defect types. Like in 2D, active torques align defect orientations p parallel to activity gradients (α = 0). The
orientation p of twist defects, however, is much less affected by active torques compared to +1/2 defects. (d) The active torque
vector Γact on twist defects changes direction as a function of defect angle α. The magnitude of the z-component Γz

act reaches
a maximum for α = ±π/2, while the out-of-plane component Γx

act, which points along the gradient direction, peaks at α = 0, π,
where its sign depends on the chirality of the twist defect. (e) Director field of of a twist defect with orientation p at a finite
angle α with respect to boundary conditions set up by the effective anchoring force, favouring normal and tangential anchoring
on the contractile and extensile side, respectively. (f) Elastic forces in the defect plane create an elastic torque Γz

el which aligns
twist defects anti-parallel to activity gradients. Active and elastic forces were calculated from Πact and Πel, respectively, using
a fixed director field Q on a 3D lattice of size 100× 100× 20.


