Supplementary information

EVIDENCE BY NEUTRON DIFFRACTION OF MOLECULAR
COMPOUNDS IN TRIARYLAMINE TRIS-AMIDE ORGANOGELS AND IN
THEIR HYBRID THERMOREVERSIBLE GELS WITH PVC.
GUENET $^{1 *}$, Jean-Michel ; DEMÉ ${ }^{2}$; Bruno; GAVAT ${ }^{1}$; Odile; MOULIN ${ }^{1}$; Emilie; GIUSEPPONE ${ }^{1}$, Nicolas
1 Institut Charles Sadron
CNRS-Université de Strasbourg
23 rue du Loess, BP84047
67034 STRASBOURG, Cedex2, France
2 Institut Laue-Langevin
71 avenue des Martyrs CS 20156
38042 GRENOBLE Cedex 9 - France

component	TATA	BrBzH	BrBzD	o-DCBH	o-DCBD	TCEH	TCED	PVC
$A=\sum b_{i} \times 10^{12} \mathrm{~cm}$	8	2.8	8.03	4.4	8.59	4.41	6.51	1.17
$\frac{A}{v_{m}}$	0.011	0.0264	0.076	0.039	0.077	0.042	0.062	0.030
$\frac{Z_{e}}{v_{m}}$	0.583	0.72	0.72	0.68	0.68	0.78	0.78	0.71

Table S1: Scattering amplitudes ${ }^{18}$ of the different components used in the present study obtained by summing the scattering length b_{i} of the constituting atoms, together with the amplitude per unit molar volume $\left(v_{\mathrm{m}}\right)$, and the number of electrons Z_{e} per unit molar volume. The latter allow comparison between the different radiations and components.

Figure S1: theoretical curves for hexagonal packing and for arrangement in a row calculated from relation 4 . The number of helices is indicated.

$\mathrm{q}_{\text {BrBZH }}$	$\mathrm{d}_{\text {BrBZH }}$	$\mathrm{q}_{\text {BrBZD }}$	$\mathrm{d}_{\text {BrBZD }}$	$\mathrm{q}_{\text {oDCBH }}$	$\mathrm{d}_{\text {oDCBH }}$	$\mathrm{q}_{\text {oDCBD }}$	$\mathrm{d}_{\text {oDCBD }}$
1.96	3.2	1.96	3.2	2.005	3.134	2.005	3.134
		3.469	1.81	3.38	1.859	3.366	1.867
		5.76	1.091	5.48	1.146	5.483	1.146

Table S2: Diffraction peaks position $\mathrm{q}\left(\mathrm{nm}^{-1}\right)$ in TATA/BrBZ and TATA/o-DCB at T $=20^{\circ} \mathrm{C}$, and the corresponding distances (nm) calculated by means of Bragg's law. Values in red italics indicate very week peak.

$\mathrm{q}_{\exp }$ $\left(\mathrm{nm}^{-1}\right)$	$\mathrm{d}_{\exp }$ (nm)	$\mathrm{I}(\mathrm{q})$	$h k$	FWHM	$\mathrm{d}_{\text {cal }}$ (nm)	Lattice parameters TATA/TCE	Lattice parameters structure I^{13}
2.22	2.86	S	11	0.17	2.86		
2.5	2.51	S	04	0.13	2.51		
2.94	2.14	VS	13	0.15	2.22	Orthorhombic $a=2.98 \mathrm{~nm}$ $b=10.04 \mathrm{~nm}$ $\gamma=90^{\circ}$	Orthorhombic $a=2.78 \mathrm{~nm}$ $b=7.85 \mathrm{~nm}$ $\gamma=90^{\circ}$
3.67	1.71	VS	06 15	0.15	1.674 1.665		1.00
	W	31	0.12	0.989			
6.59	0.95	W	28	0.13	0.960		
7.37	0.852	W	0,12	0.13	0.837		

Table S3: Tentative structure in TATA/TCEH at $20^{\circ} \mathrm{C}$ based on the structure I previously published ${ }^{13}$. $\mathrm{q}_{\text {exp }}, \mathrm{d}_{\text {exp }}, \mathrm{q}_{\text {cal }}, \mathrm{d}_{\text {cal }}$: experimental and calculated scattering vectors and spacings from peak position; I: intensity of reflection, signal intensity code: $\mathrm{VS}=$ very strong, $\mathrm{S}=$ strong, $\mathrm{W}=$ weak, $h k$ are the Miller indices of the reflections; a, b, γ, lattice parameters. The lattice parameters of structure I from reference 13 are also given. Basically, only the reflections satisfying $h+k=2 n$ are present.

Figure S2: distance $\mathrm{d}_{\text {calc }}$ calculated with the above unit cell for TATA/TCE $\left(a=2.98 \mathrm{~nm}, b=10.04 \mathrm{~nm}, \gamma=90^{\circ}\right)$ versus the experimental values $d_{\text {exp. }}$. Fit performed with a straight line of fixed slope of 1 and of intercept 0 gives a coefficient of determination $\mathrm{R}^{2}=0.9980$. Conversely, a linear fit with a fixed intercept (0) gives a slope of 1.004, and a coefficient of determination $\mathrm{R}^{2}=0.9998$.

Figure S3: Indexation of the $h k$ planes with the reflections corresponding to $h+k=2 n$.

$\mathrm{q}_{\exp }\left(\mathrm{nm}^{-1}\right)$	$\mathrm{d}_{\exp }(\mathrm{nm})$	$\mathrm{I}(\mathrm{q})$	$h k$	$\mathrm{d}_{\text {cal }}(\mathrm{nm})$ from lattice parameters of Structure I^{13}	Lattice parameters of structure I^{13}
2.449	2.56	VS	11	2.67	Orthorhombic $a=2.78 \mathrm{~nm}$ $b=7.85 \mathrm{~nm}$ $\gamma=90^{\circ}$
3.25	1.933	S	04	1.96	 4.79

Table S4: Diffraction peaks from PVC20/TATA/TCE at $\mathrm{T}=50^{\circ} \mathrm{C}$. Positions of peaks $\mathrm{q}_{\mathrm{exp}}$, and the corresponding distance $\mathrm{d}_{\text {exp }}, \mathrm{I}(\mathrm{q})$: intensity of reflection, signal intensity code: VS = very strong, $\mathrm{S}=$ strong, $\mathrm{M}=$ middle, the corresponding Miller indices, and $\mathrm{d}_{\text {cal }}$ calculated with the lattice parameter of structure I^{13}. Note that the 13 reflection is absent possibly due to a distortion of the unit cell.

