Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2022

1

Supplementary information

EVIDENCE BY NEUTRON DIFFRACTION OF MOLECULAR

COMPOUNDS IN TRIARYLAMINE TRIS-AMIDE ORGANOGELS AND IN

THEIR HYBRID THERMOREVERSIBLE GELS WITH PVC.

GUENET^{1*}, Jean-Michel ; DEMÉ²; Bruno; GAVAT¹; Odile; MOULIN¹; Emilie; GIUSEPPONE¹, Nicolas

1 Institut Charles Sadron CNRS-Université de Strasbourg 23 rue du Loess, BP84047 67034 STRASBOURG, Cedex2, France

2 Institut Laue-Langevin 71 avenue des Martyrs CS 20156 38042 GRENOBLE Cedex 9 - France

component	TATA	BrBzH	BrBzD	o-DCBH	o-DCBD	ТСЕН	TCED	PVC
$A = \sum b_i \times 10^{12} \text{ cm}$	8	2.8	8.03	4.4	8.59	4.41	6.51	1.17
$\frac{A}{v_m}$	0.011	0.0264	0.076	0.039	0.077	0.042	0.062	0.030
$\frac{Z_e}{v_m}$	0.583	0.72	0.72	0.68	0.68	0.78	0.78	0.71

Table S1: Scattering amplitudes¹⁸ of the different components used in the present study obtained by summing the scattering length b_i of the constituting atoms, together with the amplitude per unit molar volume (v_m), and the number of electrons Z_e per unit molar volume. The latter allow comparison between the different radiations and components.

Figure S1: theoretical curves for hexagonal packing and for arrangement in a row calculated from relation 4. The number of helices is indicated.

q _{BrBZH}	d _{BrBZH}	q _{BrBZD}	d _{BrBZD}	q _{oDCBH}	d _{oDCBH}	q _{oDCBD}	d _{oDCBD}
1.96	3.2	1.96	3.2	2.005	3.134	2.005	3.134
		3.469	1.81	3.38	1.859	3.366	1.867
		5.76	1.091	5.48	1.146	5.483	1.146

Table S2: Diffraction peaks position q (nm⁻¹) in TATA/BrBZ and TATA/o-DCB at $T= 20^{\circ}$ C, and the corresponding distances (nm) calculated by means of Bragg's law. Values in red italics indicate very week peak.

q_{exp} (nm ⁻¹)	d _{exp} (nm)	I (q)	hk	FWHM	d _{cal} (nm)	Lattice parameters TATA/TCE	Lattice parameters structure I ¹³
2.22	2.86	S	11	0.17	2.86		
2.5	2.51	S	04	0.13	2.51		
2.94	2.14	VS	13	0.15	2.22	Orthorhombic	Orthorhombic
3.67	1.71	VS	06 15	0.15	1.674 1.665	a = 2.98 nm b = 10.04 nm	a = 2.78 nm b = 7.85 nm
6.281	1.00	W	31	0.12	0.989	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$
6.59	0.95	W	28	0.13	0.960		
7.37	0.852	W	0,12	0.13	0.837		

Table S3: Tentative structure in TATA/TCEH at 20°C based on the structure I previously published ¹³. q_{exp} , d_{exp} , q_{cal} , d_{cal} : experimental and calculated scattering vectors and spacings from peak position; I: intensity of reflection, signal intensity code: VS = very strong, S = strong, W= weak, *hk* are the Miller indices of the reflections; *a*, *b*, γ , lattice parameters. The lattice parameters of structure I from reference 13 are also given. Basically, only the reflections satisfying *h*+*k*= 2*n* are present.

Figure S2: distance d_{calc} calculated with the above unit cell for TATA/TCE (a = 2.98 nm, b = 10.04 nm, $\gamma = 90^{\circ}$) versus the experimental values d_{exp} . Fit performed with a straight line of fixed slope of 1 and of intercept 0 gives a coefficient of determination $R^2 = 0.9980$. Conversely, a linear fit with a fixed intercept (0) gives a slope of 1.004, and a coefficient of determination $R^2 = 0.9998$.

Figure S3: Indexation of the *hk* planes with the reflections corresponding to h+k=2n.

$q_{exp} (nm^{-1})$	d _{exp} (nm)	I (q)	hk	d _{cal} (nm) from lattice parameters of Structure I ¹³	Lattice parameters of structure I ¹³
2.449	2.56	VS	11	2.67	Orthorhombic
3.25	1.933	S	04	1.96	a = 2.78 nm b = 7.85 nm
4.79	1.31	М	22	1.335	$\gamma = 90^{\circ}$

Table S4: Diffraction peaks from PVC20/TATA/TCE at T= 50°C. Positions of peaks q_{exp} , and the corresponding distance d_{exp} , I(q): intensity of reflection, signal intensity code: VS = very strong, S = strong, M= middle, the corresponding Miller indices, and d_{cal} calculated with the lattice parameter of structure I¹³. Note that the 13 reflection is absent possibly due to a distortion of the unit cell.