Electronic Supplementary Information: Modes of Adhesion of Two Janus Nanoparticles Adsorbed on the Outer and Inner Sides of Lipid Vesicles

Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA

Figure S1: Time series of snapshots of a dimer of Janus NPs undergoing endocytosis at $J=0.7$ and $\xi=3.94 k_{B} T / \mathrm{nm}^{2}$. These snapshots show a reduction of the size of the neck during the endoyctosis process, accompanied by an increased antialignment of the principal axes of the two NPs.

Figure S2: Free energy versus distance between two $20-\mathrm{nm}$ NPs, adhering to the inner side the vesicle, for different values of J at $\xi=4.33 k_{B} T / \mathrm{nm}^{2}$. Snapshots (a), (b) and (c) correspond to most stable states at $J=0.30,0.50$ and 0.79 , respectively. Snapshots (d), (e), and (f) correspond to the dimeric state ($d=11 \mathrm{~nm}$) for $J=0.30,0.50$, and 0.79 , respectively. Snapshot (g) is for $J=0.79$ at $d=60 \mathrm{~nm}$.

Figure S3: Net adhesion energy of two $20-\mathrm{nm}$ Janus NPs, adhering to the inner side of the vesicle at $\xi=1.57 k_{B} T / \mathrm{nm}^{2}$, as a function of the distance between them. Graphs for $J=0.20,0.30,0.39,0.50$, and 0.79 were translated upward by 350,750 , 1200,1700 , and $2900 k_{B} T$, respectively.

