Supporting Information

On-demand Gelation of Ionic Liquids Using Photoresponsive Organometallic Gelators

Ryo Sumitani,^a Masamichi Yamanaka^b and Tomoyuki Mochida *^{a,c}

^aDepartment of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan. E-mail: tmochida@platinum.kobe-u.ac.jp ^bMeiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204–8588, Japan ^cResearch Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan

Contents

Experimental

Synthesis of [C₆CNEt₃N][Tf₂N]

Synthesis of [CpRu(L')][B(CN)₄] (**2-B(CN)**₄)

Figures and Tables

Fig. S1. DSC curve of 1-PF₆.

Fig. S2. FT-IR and ¹H NMR (CD₃CN) spectra of 1-PF₆, 1-B(CN)₄, and L.

Fig. S3. Photographs of C and D.

Fig. S4. ¹H NMR spectra (CD₃CN) of **B**–**E**.

Fig. S5. FT-IR spectra of A, B, D, and E.

Fig. S6. DSC curves of the ionogels.

Fig. S7. SEM images of the ionogels.

Fig. S8. Viscoelastic moduli and complex viscosity of the ionogels.

Fig. S9. Storage modulus and loss modulus of the ionogels.

Fig. S10. Viscoelastic moduli and complex viscosity of the ionogels.

Fig. S11. Viscoelastic moduli and complex viscosity of the ionogels.

Fig. S12. Molecular structures of the cations of 1-PF₆ in the crystal.

Fig. S13. TG-DTA curves of gelator L.

 Table S1. Crystallographic parameters.

 Table S2. Gel-sol transition temperature of the ionogels.

Experimental

Synthesis of [C6CNEt3N][Tf2N]. In a nitrogen atmosphere, an amount of 7bromoheptanenitrile (1.84 g, 9.7 mmol) was slowly added to a solution of triethylamine (1.0 g, 9.88 mmol) in acetonitrile (2 mL). The solution was subsequently heated at 80 °C for 3 h with constant stirring. The solvent was then removed under reduced pressure. The resultant orange liquid was washed 10 times with hexane and dried under vacuum at 80 °C for 1 h to obtain [C₆CNEt₃N]Br as an orange liquid (2.5 g, 90%). Potassium bis(trifluoromethanesulfonyl)imide (KTf₂N; 6.2 g, 19.4 mmol) was added to an aqueous solution (20 mL) of [C₆CNEt₃N]Br (2.5 g, 8.7 mmol), and the solution was stirred vigorously for 1 h. The resultant [C₆CNEt₃N][Tf₂N] phase was collected and washed three times with water. The orange liquid was dried under vacuum for 3 h at 60 °C. The crude product was purified by column chromatography (alumina, eluent: dichloromethane/acetonitrile, gradient from 1:0 to 0:1). After evaporation of the solvent, the residue was dissolved in acetonitrile and heated to reflux, to which a small amount of activated carbon was added. The activated carbon was then removed by filtration without cooling. After evaporation of the solvent, the residue was dried under vacuum at 130 °C for 6 h. The desired product was a pale-yellow liquid (3.4 g, 69% yield). $T_g = -72$ °C (DSC). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.35$ (t, 9H, N(CH₂CH₃)₃, J = 7.22 Hz), 1.46 (m, 2H, NC₃H₆CH₂), 1.56 (m, 2H, NC₂H₄CH₂), 1.70 (m, 4H, NCH₂CH₂C₂H₄CH₂), 2.39 (t, 2H, NC₅H₁₀CH₂, J = 6.89 Hz), 3.16 (t, 2H, NCH_2 , J = 8.51 Hz), 3.29 (q, 6H, $N(CH_2CH_3)_3$). FT-IR (ATR, cm⁻¹): 600, 613, 653, 739, 761, 1052 (S=O), 1134, 1177 (C-F), 1330, 1348, 1397, 1460, 1487, 2246 (CN), 2869 (C-H), 2950 (C-H). Anal. Calcd. for C₁₅H₂₇F₆N₃O₄S₂: C, 36.66, H, 5.54, N, 8.55. Found: C, 36.48, H, 5.72, N, 8.38.

Synthesis of [CpRu(L')][B(CN)4] (2-B(CN)4). [CpRu(L')]PF₆ (2-PF₆) was synthesized using the procedure identical to that for 1-PF₆ using L' (33 mg, 0.083 mmol) and [CpRu(CH₃CN)₃]PF₆ (30 mg, 0.069 mmol). The desired product was obtained as an orange viscous liquid (27 mg, 55%). ¹H NMR (400 MHz, CDCl₃): δ = 0.88 (t, 3H, CH₃, J = 6.89 Hz), 1.26 (m,

18H, NHC₂H₄C₉*H*₁₈), 1.58 (m, 2H, NHCH₂C*H*₂), 3.21 (m, 2H, NHC*H*₂), 4.00 (m, 2H, PhC*H*₂), 5.26 (s, 5H, Cp-*H*), 5.60–5.88 (m, 4H, Ru–Ph–*H*), 6.98 (s, 1H, NHC₁₂H₂₅), 7.22 (s, 1H, PhN*H*), 7.10–7.40 (m, 5H, CH₂Ph-*H*). FT-IR (ATR, cm⁻¹): 567 (P–F), 745, 1242, 1289, 1451 (Cp, C=C), 1465, 1482, 1563 (Arene, C=C), 1632 (C=O), 2847, 2916 (C–H). **2-B(CN)**₄ was synthesized using the procedure identical to that for **1-B(CN)**₄ using **2-PF**₆ (21 mg, 0.030 mmol) and KB(CN)₄ (14 mg, 0.089 mmol). The desired product was obtained as an orange viscous liquid (13 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃): δ = 0.88 (t, 3H, C*H*₃, *J* = 6.89 Hz), 1.26 (m, 18H, NHC₂H₄C₉*H*₁₈), 1.58 (m, 2H, NHCH₂C*H*₂), 3.21 (m, 2H, NHC*H*₂), 4.00 (m, 2H, PhC*H*₂), 5.26 (s, 5H, Cp-*H*), 5.60–5.88 (m, 4H, Ru–Ph–*H*), 6.98 (s, 1H, NHC₁₂H₂₅), 7.22 (s, 1H, PhN*H*), 7.10–7.40 (m, 5H, CH₂Ph-*H*).

Figures and Tables

Fig. S1. DSC curve of $1-PF_6$, where cr., liq,. and gl. are the crystal, liquid, and glassy states, respectively. A cold-crystallization peak is seen at 45 °C in the second cycle.

Fig. S2. (a) FT-IR and (b) ¹H NMR (CD₃CN) spectra of 1-PF₆, 1-B(CN)₄, and L.

Fig. S3. Photographs of C (containing 5 wt.% **1-PF**₆) and D (containing 5 wt.% **1-B(CN)**₄) before and after photoirradiation.

Fig. S4. ¹H NMR spectra (CD₃CN) of **B**–E (containing 5 wt.% 1-X) before and after photoirradiation and subsequent heating at 120 °C.

Fig. S5. FT-IR spectra of **A**, **B**, **D**, and **E** (containing 5 wt.% **1-X**) before and after photoirradiation and after subsequent heating at 120 °C.

Fig. S6. DSC curves of the ionogels prepared by photoirradiation of **B**–**E** (containing 5 wt.% 1-**X**), where liq. and sus. are the liquid and suspension states, respectively. The peaks corresponding to the gel–sol transition, gelator coordination, and dissolution of the complex are shown by \blacktriangle , \triangle , and \Diamond symbols, respectively.

D + 1-B(CN)4

E + 1-PF₆

Fig. S7. SEM images of the ionogels prepared by (a) photoirradiation of **B**–**E** (containing 1-X 5 wt.%) and (b) addition of gelator **L** (2.4 wt.%) to the ILs. The dark spot in the right figure in (a) is an artifact by electron beam damage.

Fig. S8. (a) Angular frequency dependence (25 °C, strain 0.1%) and (b) strain dependence (10 rad s^{-1}) of viscoelastic moduli ($G': \Delta, G'': \Box$) and complex viscosity (\circ) of the ionogels prepared by the photoirradiation of **A**, **B**, **D**, and **E** (containing 5 wt.% 1-X). Data for **A** and **C** are acquired after thermal treatment (100 °C, 30 s).

Fig. S9. Plots of storage modulus (*G'*) and loss modulus (*G''*) of the ionogels prepared by the (a) photoirradiation of A-E (containing 5 wt.% 1-X) and (b) addition of gelator L (A-C: 2.4 wt.%, D and E: 2.5 wt.%) to the ILs. For A and C, the values after thermal treatment of the gel (100 °C, 30 s) are also plotted (A' and C').

Fig. S10. Angular frequency dependence (25 °C, strain 0.1%) of the viscoelastic moduli ($G': \Delta$, $G'': \Box$) and complex viscosity (\circ) of gels of (a) A and (b) C (containing 5 wt.% **1-PF**₆) formed upon photoirradiation. Data acquired immediately after photoirradiation (left) and after subsequent thermal treatment (100 °C, 30 s; right) are shown.

Fig. S11. (a) Angular frequency dependence (25 °C, strain 0.1%) and (b) strain dependence (10 rad s^{-1}) of the viscoelastic moduli ($G': \Delta, G'': \Box$) and complex viscosity (\circ) of ionogels from **A** and **B** (containing 5 wt.% **1-PF**₆) after three cycles of photoirradiation. The data for **A** were acquired after thermal treatment (100 °C, 30 s).

Fig. S12. Molecular structures of the cations of $1-PF_6$ in the crystal (-183 °C). The disordered moieties of cation **B** are displayed in gray.

Fig. S13. TG-DTA curves of gelator L (10 °C min⁻¹, N₂ atmosphere). There is a melting peak in the DTA curve at around 90 °C.

	1-PF6
Empirical formula	$C_{24}H_{37}F_6N_2OPRu$
Formula weight	615.59
Crystal system	triclinic
Space group	$P\overline{1}$
<i>a</i> [Å]	9.637(4)
<i>b</i> [Å]	9.944(5)
<i>c</i> [Å]	27.528(13)
α [°]	95.325(6)
β[°]	97.691(8)
γ [°]	96.476(6)
<i>V</i> [Å ³]	2582(2)
Ζ	4
$ ho_{ m calcd} [{ m g \ cm^{-3}}]$	1.584
$\mu \; [\mathrm{mm}^{-1}]$	0.733
Temperature [K]	90
F(000)	1264
Reflns collected	9148
<i>R</i> (int)	0.0363
Goodness of fit	1.098
$R_1^a, R_w^b (I > 2\sigma)$	0.1041, 0.2448
R_1^a, R_w^b (all data)	0.1393, 0.2643
$aR_1 = \Sigma F_0 - F_c / \Sigma F_0 .$	${}^{b}R_{w} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$

Table S1. Crystallographic parameters.

Table S2. Gel-sol transition temperature of the ionogelsprepared by adding gelator L.

П	$T_{\rm gel}(^{\circ}{\rm C})$	
IL	heating	cooling
\mathbf{A}^{a}	70	41
\mathbf{B}^{a}	85	57
\mathbf{C}^{a}	61	33
\mathbf{D}^b	69	45
\mathbf{E}^{b}	84	47

The amount of gelator added: a) 2.4 wt.% and b) 2.5 wt.%.