
Supplemental Information for
Machine learning glass caging order parameters with an artificial nested neural

network

Kaihua Zhang,1, ∗ Xinyang Li,2, 3, ∗ Yuliang Jin,2, 3, 4, † and Ying Jiang1, 5, ‡

1School of Chemistry, Beihang University, Beijing 100191, China
2CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,

Chinese Academy of Sciences, Beijing 100190, China
3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

4Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
5Center of Soft Matter Physics and Its Applications, Beihang University, Beijing 100191, China

CONTENTS

S1. Glass model 2

S2. Molecular simulation methods 3
A. Molecular dynamics simulations 3
B. Swap algorithm 3

S3. Machine learning methods 3
A. Architecture of the artificial neural network 3
B. Blanking window 4
C. Training the nested neural network and validating predictions 4
D. Making predictions using the nested neural network 4
E. Unsupervised classification using t-distributed stochastic neighbor embedding 4

S4. Finite-size scaling function of the susceptibility 4

S5. Machine learning phase transitions in the Ising model 5
A. Machine learning algorithm 5
B. Learning second-order phase transitions in two and three dimensions 6
C. Learning first-order phase transitions in two and three dimensions 7
D. Distinguishing between first- and second-order phase transitions 8

S6. Additional results for the melting transition 8
A. Dependence of the melting temperature on the decompression rate 8
B. Independence of learning results on the blanking window 8

S7. Additional results for the Gardner transition 9
A. Choice of input data 9
B. Independence of learning results on the blanking window 10

S8. Additional dynamical data for the glass transition 11

S9. Learning a toy model 11

References 12

∗ Contributed equally to this work
† yuliangjin@mail.itp.ac.cn
‡ yjiang@buaa.edu.cn

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2022



2

S1. GLASS MODEL

The model [1–5] consists of N = 125 − 8000 polydisperse hard spheres (HSs), whose diameters are distributed
according to a continuous function PD(Dmin ≤ D ≤ Dmin/0.45) ∼ D−3. The volume of simulation box is V ,
and periodic boundary conditions are used. The system state is characterized by volume fraction ϕ and reduced
temperature T̂ = 1/P̂ = NkBT/PV , where P is the pressure, P̂ the reduced pressure, kB = 1 the Boltzmann
constant, and T = 1 the temperature. We set the mean diameter Dmean as unit length, and the particle mass m as
unit mass. Crystallization is suppressed by polydispersity, and will not be discussed in this study.

The phase diagram of the model is presented in Fig. S1 [2]. Any state of the system is described by two thermody-

namic parameters, the volume fraction ϕ and the reduced temperature T̂ . The Carnahan-Starling (CS) equation of

state (EOS) [6] well captures the relationship between ϕ and T̂ of liquid states [2]. The mode-coupling theory (MCT)

transition point, T̂MCT ≈ 0.044 (or ϕMCT ≈ 0.594), was estimated in [2], below which equilibrium becomes difficult in
ordinary molecular dynamics (MD) simulations. Following convention, the intersection between liquid and glass EOSs

is defined as the glass transition point {ϕg, T̂g}. The location of glass transition point depends on the compression

rate Γ, and therefore, not unique. As can be seen in Fig. S1, the EOS of an ultra-stable glass (T̂g � T̂MCT) displays
enormous overshooting over the liquid EOS and the two EOSs are connected by an abrupt jump. In contrast, the
EOS of a poorly annealed ordinary glass (T̂g ≈ T̂MCT) merges smoothly to the liquid one.
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FIG. S1. Phase diagram of a hard sphere glass model [2]. The green, blue and red lines represent the CS liquid EOS, the
melting line that separates liquid and glass phases, and the Gardner line that separates stable and marginally stable glass
phases. The orange star represents the MCT transition point. The system is initially equilibrated at T̂g (green squares), and
then evolves following the glass EOSs (dotted black lines) under compression or decompression. To study melting and Gardner

transitions, we focus on the ultra-stable case of T̂g = 0.033 (solid black line). Typical particle trajectories are plotted to show
the diffusive motion in liquids, a confined cage in stable glasses, and the split of the cage into sub-cages in marginal glasses
(the three sub-cages are visualized by trajectories of the same particle in three replicas, which are compressed from the same

initial configuration at T̂g).

To study melting and Gardner transitions, we consider ultra-stable glasses. Deeply supercooled liquid states are
prepared by using an efficient swap Monte Carlo (MC) algorithm [1]. Once the initial states are obtained, we
switch to regular MD (without swap) to simulate follow-up dynamics. These deeply supercooled liquid states have
extraordinarily large structural relaxation (α-relaxation) time τα in the MD time unit, much larger than our MD
simulation time window.

Two instabilities – the melting and the Gardner transitions – occur if one decompresses or compresses an ultra-
stable HS glass. Under decompression, the glass is effectively “heated” up and eventually melts into a liquid at a
melting temperature T̂m(T̂g) > T̂g. Although glass melting is a non-equilibrium procedure by definition, previous
experiments [7] and simulations [8] showed that, this procedure in ultra-stable glasses is very similar to the melting
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of crystals, which is a first-order phase transition. In contrast, the melting of (poorly annealed) ordinary glasses is a
smooth crossover without any discontinuous behavior.

On the other hand, a Gardner transition [9, 10] is expected to occur at T̂G(T̂g) < T̂g if an ultra-stable HS glass

is compressed. The Gardner transition separates the stable glass (at T̂ > T̂G) and the marginally stable glass (at

T̂ < T̂G) phases. It is predicted to be a second-order phase transition in large dimensions by the mean-field glass
theory [10, 11]. Evidence of the Gardner transition in physical dimensions (2D and 3D) has been reported in a number
of simulations [2, 4, 12] and experiments [13–15]. A fixed point is found by field-theory calculations, suggesting that
the transition survives in low dimensions [16]. The existence of a Gardner transition in 3D ultra-stable HS glasses is
supported by a recent numerical study, which combines finite-time-finite-size analyses with machine learning [17].

We do not study the melting and Gardner transitions in ordinary glasses: The melting of an ordinary glass is nearly
reversible to the glass transition, and thus for our purpose, it is sufficient only to consider the latter. The Gardner
transition in ordinary glasses is blurred by activated dynamics [2]; as a result, we do not expect to observe critical
scalings.

S2. MOLECULAR SIMULATION METHODS

A. Molecular dynamics simulations

We use the Lubachevsky-Stillinger algorithm (event-driven MD) to simulate compression quench [18, 19]. Dur-
ing compression/decompression, the sizes of all particles are increased/decreased proportionally with a fixed rate

Γ = 1
2D

dD
dt . The simulation time is expressed in units of

√
mD2

mean/(kBT ). We simulate each configuration and

measure its T̂ at a fixed packing fraction ϕ. Then we collect configurations at the desired T̂ , based on which physical
quantities are computed. Additional simulation details can be found in Refs. [2, 17].

B. Swap algorithm

The swap algorithm simulates artificial dynamics that can efficiently accelerate reaching equilibrium [1]. At each
swap MC step, two particles are randomly picked, and swapped if they do not overlap with neighbor particles at
the new positions. While the dynamics are unrealistic, the final configurations in equilibrium are equivalent to those
generated by standard MD and MC simulations.

S3. MACHINE LEARNING METHODS

A. Architecture of the artificial neural network

The nested neural network (NNN) comprises two levels of networks, which in general can have different structures
(see Fig. 1). There are N duplicated small networks at the first level, each of which extracts the latent caging features
of one single particle. The small network has only one hidden layer, besides the input and output layers. Both input
and hidden layers have Mr neuron nodes, and the output layer has a single node. The ith hidden node is connected by
a single link to the ith input node, and is activated by the exponential linear unit (ELU) function. We have checked
that the machine learning results do not change with a different type of activation function, such as a tanh function,
for both melting and Gardner transitions. The output node simply takes an average of Mr hidden nodes. The N small
networks share the same parameters (weights and bias), and thus there are only 2Mr free parameters at the first level.
The number of parameters can be further reduced from 2Mr to 2, considering the permutation symmetry of replicas.
In principle, one could choose other architectures (e.g., fully connected feed-forward neural network (FNN)) for small
networks, and set their parameters to be independent. In practice, however, we find that using a small number of free
parameters at the first level can significantly increase the efficiency of the NNN model during training, without losing
its compatibility and predictive power. Generally, the number of free parameters can be minimized by considering the
symmetries of the physical system under consideration, while networks with redundant parameters can work equally
well if proper regularization is imposed [20].

The N output nodes of the first-level small networks are considered as input nodes of the followed big FNN at the
second-level. The FNN has one hidden layer of 128 nodes activated by ELU functions, and one output layer of two
nodes that provide binary classifications through softmax activation functions.
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B. Blanking window

For the supervised learning of phases, we need to label in advance to which phase a given configuration belongs,
during training and validation. A blanking window [T̂2, T̂1] is introduced to skip the vicinity of a (presumed) transi-
tion. Specifically, the following setup is used for the data presented in the main figures: for the melting transition,
configurations at T̂ > T̂1 = 0.083 and T̂ < T̂2 = 0.053 are labeled as liquids and glasses respectively; for the Gard-
ner transition, configurations at T̂ > T̂1 = 0.011 and T̂ < T̂2 = 0.0045 are labeled as stable and marginal glasses
respectively. Note that, for both transitions, the machine learning results do not sensitively depend on the choice of
blanking window (see Fig. 9, Secs. S6 B and S7 B). In contrast, the learning results of the glass transition correlates
strongly to the blacking window.

C. Training the nested neural network and validating predictions

A cross-entropy cost function is minimized during training. The Adam optimizer [21] is used to implement the
stochastic gradient descent method for updating the network parameters. To avoid overfitting, a dropout strategy [22]
is used, which randomly skips 20% hidden nodes at each step. To augment the training data set, we perform
Nshuffle = 20 − 200 random shuffles of the elements in the input vector, which is equivalent to randomly ordering
particle indexes. In this way, we expand the training data set to N train

s ×NT̂ ×Nshuffle ∼ 105 samples. The random
shuffling apparently destroys spatial correlations (if there is any) between particles. However, we find that it does
not modify the final predictions noticeably. Validation is performed after each training step, by calculating the cost
function for the validation data set. The entire training procedure is terminated when the validation cost function
reaches a minimum. Such an early stopping strategy can efficiently avoid overfitting.

D. Making predictions using the nested neural network

Once well trained, the NNN can make phase predictions for the samples in the testing data set. For each test
sample at a temperature T̂ , the NNN provides an output value of 0 or 1. The arithmetic mean of the output over all
test samples gives an estimation of the probability P of the system belonging to a specific phase, and 1 − P to the
other.

To achieve a reliable prediction, we independently train our NNN for 10 times (runs) and calculate the mean and the
statistical error of the predicted P . For each run, N train

s training samples and Npred
s prediction samples are randomly

selected from N total
s samples, and the remaining Nvalid

s samples are used for validation.

E. Unsupervised classification using t-distributed stochastic neighbor embedding

We utilize the unsupervised t-distributed stochastic neighbour embedding (t-SNE) method [23] to group samples
in the Gardner phase. The input data are the machine detected caging parameter {q̃i} of each sample, where
i = 1, 2, . . . , N . The algorithm conducts a nonlinear dimensionality reduction, which maps each vector {q̃i} to a point
in two dimensions. In the two-dimensional space, data points are rearranged according to their similarities quantified
by a t-distribution kernel function (see the inset of Fig. 2(d)).

S4. FINITE-SIZE SCALING FUNCTION OF THE SUSCEPTIBILITY

To determine the order of phase transition, a standard way is to apply a finite-size analysis of data obtained
from experiments or simulations. For example, the fluctuation of order parameter, or the susceptibility, χ, follows a
finite-size scaling function around a phase transition,

χ/Na = X
(
|T̂ − T̂c|N b

)
, (S1)

where a, b are two exponents, X (x) a scaling function whose concrete form is not important in our discussion, and T̂c

the transition temperature. The values of a and b depend on the nature of transition: (i) For a standard first-order
phase transition without disorder, a = 1 and b = 1 [24]. An example is the first-order phase transition between
positive and negative ferromagnetic phases in the Ising model under an external field. (ii) For a first-order phase
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transition in the presence of disorder, such as the yielding transition [25] and the melting transition (see Fig. S2) in
glasses, a = 1 and b = 1/2. Equation (S1) then results in two susceptibilities, a disconnected one, χdis = χ ∼ Na ∼ N ,

and a connected one χcon ∼ dX/dT̂ ∼ N b ∼ N1/2. The two susceptibilities are related via, χdis ∼ χ2
con, a relation

found in the random field Ising model [26, 27]. (iii) For a second-order phase transition, a = bγ and b = 1/dν, where
d is the dimensionality, and γ and ν are the critical exponents for the divergences of susceptibility and correlation
length. A standard example is the second-order phase transition between paramagnetic and ferromagnetic phases in
the Ising model without a field.

Let us examine the finite-size scaling of the density susceptibility at fixed T̂ , χϕ = N
[
ϕ2 − (ϕ)

2
]
/ (ϕ)

2
, around

the melting of ultra-stable glasses, where · · · represents the average over samples. The density susceptibility displays
a clear dependence on system size N , around the melting temperature T̂m ≈ 0.064 (see Fig. S2(a)). Its finite-size

scaling satisfies Eq. (S1), with a ≈ 1 and b ≈ 0.5 (see Fig. S2(b)). The melting temperature T̂m(N) can be obtained

from the peak position of χϕ(T̂ ) (data plotted in Fig. 5(a)). Note that the caging susceptibility around the Gardner
transition suffers from strong finite-size and finite-time effects simultaneously, making a direct analysis difficult (see
Ref. [17]).
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FIG. S2. Finite-size analysis of the density susceptibility around the melting transition. (a) Density susceptibility χϕ as a

function of T̂ , for a few different system sizes N . (b) Collapse of the χϕ data according to Eq. (S1). Best collapsing is obtained

by setting a = 0.8, b = 0.5 and T̂c = T̂m = 0.064.

S5. MACHINE LEARNING PHASE TRANSITIONS IN THE ISING MODEL

A. Machine learning algorithm

We study the Ising model in both two and three dimensions to validate the finite-size scaling function Eq. (2) in
a standard equilibrium system. Machine learning is carried out using TensorFlow [28]. Following [29], we make use
of a fully connected FNN, which comprises three layers (input, hidden and output) of nodes. The number of neurons
in the input layer is equal to the number of spins N = Ld, where L is the linear size of the lattice and d is the
dimensionality. The hidden layer is composed of 200 neurons activated by sigmoid functions, and the output layer has
2 neurons activated by a softmax function. During training, a cross-entropy cost function is minimized by means of a
stochastic gradient descent method with an Adam optimizer [21]. In order to avoid overfitting, we adopt a dropout
regularization [22], and an early stopping strategy.

The input data are spin configurations generated by the Wolff algorithm [30]. At a given magnetic field H and
a given temperature T , we prepare Ns ≈ 10, 000 samples, and use 80% of them for training, 10% for validation and
10% for prediction. Random shuffling is applied two to four times to make sure that there are sufficient samples at
each combination of (H,T ) during training.
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B. Learning second-order phase transitions in two and three dimensions
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FIG. S3. Machine learning the second-order phase transition in the 2D Ising model. Output from machine leaning, P (T,N)

and 1 − P (T,N), as functions of (a) T and (b) (T − Tc)N
1/dν , for a few different N = L2 at H = 0. The data points are

fitted to Eq. (S2) (lines), where the fitting parameters Tc and w are presented in the inset of (a) and Fig. (S7). The exponent
b = 1/dν = 0.517(4) is obtained from fitting w(N) = w0N

−b, and is used in (b). Error bars represent the standard error of the
mean in all figures.
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FIG. S4. Machine learning the second-order phase transition in the 3D Ising model. Output from machine leaning, P (T,N)

and 1−P (T,N), as functions of (a) T and (b) (T −Tc)N
1/dν , for a few different N = L3 at H = 0, where b = 1/dν = 0.528(4).

The inset of (a) shows Tc(L).

In two and three dimensions, a second order phase transition occurs at Tc when the temperature is varied under
the zero-field condition H = 0. Previous studies have established the values of Tc and ν (the critical exponent for
the divergence of correlation length): Tc = 2.26918531421. . . [31] and ν = 1 [32] in 2D; Tc ≈ 4.511528(6) [33] and
ν ≈ 0.63012(16) [34] in 3D. Supervised machine learning techniques have been well utilized to learn the continuous
phase transition in the Ising model in both 2D [29] and 3D [35]. Here we reproduce these results using our algorithm.
For this purpose, we generate zero-field (H = 0) input configurations around Tc at NT different temperature points.
The data points P (T,N) obtained from machine learning are fitted to

P (T,N) =
1

2
+

1

2
erf {[T − Tc(N)] /w(N)} , (S2)

where N = Ld, erf(x) is the error function, and Tc(N) and w(N) are two fitting parameters representing the critical
temperature and the width of transition region (see Fig. S3 for 2D and Fig. S4 for 3D). The estimated critical
temperatures agree with existing values (see insets of Figs. S3 and S4). Next, we examine the finite-size scaling
function Eq. (2). The scaling function suggests that,

w(N) ∼ N−b, (S3)
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which is used to determine the critical exponent, ν = 0.967(4) (or b = 1/dν = 0.517(4)) in 2D and ν = 0.631(3) (or
b = 0.528(4)) in 3D (see Fig. S7). These estimations are in a good agreement with the standard values, ν = 1 in
2D [32] and ν ≈ 0.63012 in 3D [34]. Indeed, the data points of P (T, L) for different sizes can be collapsed onto a
single curve if they are plotted as a function of the rescaled quantity (T − Tc)N1/dν (see Figs. S3(b) and S4(b)).

C. Learning first-order phase transitions in two and three dimensions
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FIG. S5. Machine learning the first-order phase transition in the 2D Ising model. Output from machine leaning, P (H,N) and
1− P (H,N), as functions of (a) H and (b) (H −Hc)N , for a few different N = L2. The inset of (a) shows Hc(L).
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FIG. S6. Machine learning the first-order phase transition in the 3D Ising model. Output from machine leaning, P (H,N) and
1− P (H,N), as functions of (a) H and (b) (H −Hc)N , for a few different N = L3. The inset of (a) shows Hc(L).

For a fixed temperature T < Tc, a first-order phase transition occurs at Hc = 0 when H is varied. To our knowledge,
the finite-size scaling Eq. (2) of the first-order phase transition in the Ising model has not been systematically studied
yet within the machine learning framework. In this study, we show that the expected scaling Eq. (2) is fully consistent
with our data. We set kBT/J = 2.1 for the 2D model and kBT/J = 4.0 for the 3D model, where J is the interaction
constant. Configurations are generated at NH different external fields around Hc = 0, with positive and negative
fields evenly divided. The data points P (H,N) obtained from machine learning are fitted to

P (H,N) =
1

2
+

1

2
erf {[H −Hc(N)] /w(N)} . (S4)

As shown in Figs. S5 and S6, the estimated transition field is close to Hc = 0. Furthermore, we obtain b ≈ 0.96(2)
for the 2D model, and b ≈ 1.012(4) for the 3D model, which are consistent with the expected value b = 1 [24].
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FIG. S7. Comparing the finite size scalings of first- and second-order phase transitions in the Ising model. The data of transition
width w(N) are obtained from Figs. (S3-S6). The exponent b is obtained from fitting w(N) = w0N

−b (lines). (a) In the 2D
Ising model, we obtain b = 0.96(2) for the first-order phase transition, and b = 1/dν = 0.517(4) (i.e., ν = 0.967(4)) for the
second-order phase transition. (b) In the 3D Ising model, we obtain b = 1.012(4) for the first-order phase transition, and
b = 0.528(4) (i.e., ν = 0.631(3)) for the second-order phase transition.

D. Distinguishing between first- and second-order phase transitions

Based on above analyses, we confirm that, by utilizing the scaling function Eq. (2), the original machine learning
approach proposed in [29] can be generalized to identify both first- and second-order phase transitions, in the standard
Ising model. Very importantly, the order of phase transition can be identified because the finite-size exponents b in
Eq. (2) are distinguishable within the numerical accuracy for first- and second-order phase transitions. As shown in
Fig. S7, b = 1 for first-order phase transitions (without considering the effect of disorder), and b = 1/dν for second-
order phase transitions. While the phase transitions in the Ising model are in equilibrium, we show that the approach
can be further generalized to non-equilibrium first-order (melting transition) and second-order (Gardner transition)
phase transitions in disordered systems such as glasses (see Fig. 5).

S6. ADDITIONAL RESULTS FOR THE MELTING TRANSITION

A. Dependence of the melting temperature on the decompression rate

The T̂ − ϕ EOSs of ultra-stable glasses in Fig. S8 show that the melting transition temperature T̂m decreases with
slower decompression. It is expected that, in the limit Γ → 0, the hysteresis in EOS will disappear and the glass
melting will become a continuous crossover. However, for the range of Γ relevant to this study, the discontinuous
feature remains. In the main text, we examine the finite-size effect for a fixed decompression rate Γ = −10−4, and do
not further discuss the rate-dependence.

B. Independence of learning results on the blanking window

During training, the samples at T̂ > T̂1 and T̂ < T̂2 are labeled as in the liquid and glass phases respectively.
The samples in the blanking window [T̂2, T̂1] are not used. Figure S9 shows that the machine predicted melting

temperature T̂m and transition width w are independent of the blanking window (more specifically, the center of

window T̂center = (T̂1 + T̂2)/2 and the width of window ∆T̂ = T̂1− T̂2). Note that, obviously we should require T̂m to

be inside of the blanking window, i.e., T̂2 < T̂m < T̂1. With this restriction, the choice of blanking window is flexible.
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using a few different combinations of T̂1 and T̂2, for N = 2000 and Γ = 10−4. The predicted T̂m and w are plotted as functions
of T̂center and ∆T̂ . The horizontal dashed lines are T̂m(N = 2000) = 0.064 and w(N = 2000) = 0.001 obtained for T1 = 0.083

and T2 = 0.053. The solid line in (a) represents T̂m = T̂center. The same data in (a) are plotted in Fig. 9(a).

S7. ADDITIONAL RESULTS FOR THE GARDNER TRANSITION

A. Choice of input data

According to the predictions from the mean-field glass theory [11, 36], the features of stable and marginally stable
phases are encoded in {∆i}, and thus in principle one should be able to use {|rABi |2} as input data to train networks.
However, in practice, the network fails to correctly identify both phases, when {|rABi |2} are used as input. We find

that (see Fig. S10), as T̂ → 0, the predicted probability P ≈ 0.5, while physically we expect P ≈ 1 (the samples should
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all belong to the marginally stable phase at sufficiently low T̂ ). On the other hand, correct and robust predictions are

obtained when {uABi =
|rABi |2

∆i
− 1} are used as input. Indeed, the cage size ∆i = 〈|rABi |2〉r generally becomes smaller

with decreasing T̂ , but this effect is independent of the physics of Gardner transition. The purpose of normalization
is to remove this effect.
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FIG. S10. Failure to learn the Gardner transition using {|rABi |2} as input data. The test is performed for N = 2000 systems.

B. Independence of learning results on the blanking window

Figure S11 shows that the machine predicted Gardner transition temperature T̂G and the transition width w are
independent of the choice of blanking window.

a

c

b

d
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w

FIG. S11. Independence of T̂G and w on the blanking window [T̂2, T̂1], for the Gardner transition. The predicted T̂G and w are

plotted as function of T̂center and ∆T̂ (for N = 8000 systems). The horizontal dashed lines are T̂G(N = 8000) = 0.0067 and

w(N = 8000) = 0.0012 obtained for T1 = 0.011 and T2 = 0.0045. The solid line in (a) represents T̂G = T̂center. The same data
in (a) are plotted in Fig. 9(b).
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S8. ADDITIONAL DYNAMICAL DATA FOR THE GLASS TRANSITION

In Fig. S12, we plot the data of mean-squared displacement (MSD),

δr2(t) =
1

N

N∑
i=1

|ri(t)− ri(0)|2, (S5)

around the liquid to ordinary glass transition, where ri(0) is the position of particle i right after compression with a
rate Γ = 10−3, and ri(t) is the position at time t (we set t = 0 and Γ = 0 after compression). The dynamics clearly

slow down with decreasing T̂ , but activated processes are non-negligible since the MSD is not completely flat even at
low T̂ . Figure S12(b) shows that the average cage size ∆ changes smoothly with T̂ and depends sensitively on the
measurement time t. For a comparison, see the MSD of ultra-stable glasses in Fig. 2 of Ref. [2].

ba

10−3 10−2 10−1 100 101 102 103

10−5

10−3

10−1

101

103

t

δr
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0

5

10

15

20

T̂

∆
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t = 128

FIG. S12. Dynamical data of the glass transition. (a) MSD data at different densities (N = 500): from top to bottom, ϕ =

0.3, 0.4, 0.5, 0.53, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.645, 0.65, 0.655, 0.66 (T̂ = 0.27, 0.16, 0.084, 0.069,
0.059, 0.054, 0.050, 0.045, 0.040, 0.036, 0.030, 0.025, 0.019, 0.014, 0.011, 0.0078, 0.0049, 0.0018). (b) Average cage size ∆ as a

function of T̂ for a few different measurement time t.

S9. LEARNING A TOY MODEL

We artificially construct a toy model consisting of two phases, which are represented by two distribution functions
respectively: a single Gaussian distribution pI(x) = pG(x;µ, σ) for phase I, and a two-Gaussian distribution pII(x) =

1
2pG(x;µ1, σ1) + 1

2pG(x;µ2, σ2) for phase II, where pG(x;µ, σ) = 1
σ
√

2π
e−

(x−µ)2

2σ2 is the standard Gaussian (normal)

distribution of mean µ and variance σ2. We choose the parameters such that the means and variances are identical

for the two distributions, but the skewnesses 〈
(
x−µ
σ

)3〉 are different (see Table S1): µ = 0, σ = 1.768 in pI(x), and
µ1 = −1, σ1 = 2, µ2 = 1, σ2 = 0.5 in pII(x).

The setup for the machine learning algorithm is similar to that illustrated in Fig. 1. We use N = 1 “particle”,
whose feature is described by an input vector V of Mr = 1000 random numbers drawn from pI(x) or pII(x). Thus V is
a representation of the probability distribution function for each phase. The front-connected small network maps the
distribution pI(x) or pII(x) to a single scalar “order parameter” q. The two-level NNN is trained by N train

s = 15000
samples, and makes the phase prediction for Npred

s = 2500 samples. The rest of the method is equivalent to that for
learning the glass model.

The Pearson correlation coefficients r between the first three moments and the parameter q are computed, taking
account of both phases (see Table S1). The predicted q is strongly correlated to the skewness (r ≈ 1), while its
correlation to the mean or the variance is negligible (r ≈ 0). This exercise shows that our method can correctly
extract higher-order statistical moments from the input data when the mean and variance are trivial.
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TABLE S1. Machine learning results for the toy model. Presented are the first three moments (mean, variance and skewness)
of probability distribution functions pI(x) and pII(x), and the Pearson correlation coefficient r between the moment and the
parameter q learned by the small network.

pI(x) pII(x) r

mean 0 0 -0.018

variance 3.125 3.125 0.109

skewness 0 -5.625 0.957
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