Electronic Supplementary Information for Robust Folding of Elastic Origami

M. E. Lee-Trimble, ${ }^{* a}$ Ji-Hwan Kang, ${ }^{b, c}$ Ryan C. Hayward, ${ }^{b, d}$ and Christian D. Santangelo ${ }^{a, e}$

I. ELASTIC MODULI OF TRILAYER ORIGAMI

Our estimates of elastic moduli will be based on the estimates $Y_{N} / Y_{p} \sim 5 \times 10^{-4}$ and $h_{p} / h_{N} \sim 0.04$.

A. Estimate of the stretching energy of elastic origami

We estimate the elastic energy of a face according to

$$
\begin{equation*}
E=\frac{1}{2} \int d A\left[\int_{-h_{N} / 2-h_{P}}^{-h_{N} / 2} d z Y_{p}+\int_{-h_{N} / 2}^{h_{N} / 2} d z Y_{N}+\int_{h_{N} / 2}^{h_{N} / 2+h_{P}} d z Y_{p}\right] \gamma^{2}, \tag{1}
\end{equation*}
$$

where Y_{N} and Y_{p} are the three dimensional Young's moduli and h_{N} is the thickness of the hydrogel layer, h_{P} is the thickness of each polymer layer, and γ is a dimensionless strain.

FIG. 1: (left) a cross-section of a trilayer origami face showing the thicknesses and three-dimensional Young's moduli. (right) the area of each face adjacent to an edge that is closer to that edge than any other.

Then assuming that γ is approximately constant across a face and assuming $Y_{p} h_{P} \gg Y_{N} h_{N}$, we obtain

$$
\begin{equation*}
E \approx Y_{p} h_{p} A \gamma^{2} . \tag{2}
\end{equation*}
$$

For the area, A and an edge surrounded by two faces, we use the area in Fig. 1, which is conveniently one third the total area of the two adjoining faces. For edges on the boundary, the corresponding stretching energy is obtained from a single face. Comparing this to our spring energy,

$$
\begin{equation*}
E=\frac{1}{2} \kappa_{S} \gamma^{2}, \tag{3}
\end{equation*}
$$

we obtain an estimate $\kappa_{S, I} \approx 2 Y_{p} h_{p} A_{I}$ for the stretching modulus associated with edge I, where A_{I} is the appropriately chosen area

[^0]

FIG. 2: Bending a face or a fold to have constant curvature R^{-1}. The angle θ is identical to the apparent fold angle of the fold. When bending a face (left), we assume the face bends along the midsurface whereas for an active fold, we assume the surface bends along the stiffest layer.

B. The bending modulus of the folds

For an active fold, we assume the fold is bent along a width W_{I} to a constant curvature R, so that $R=W_{I} / \theta$. Therefore, the bending energy of a face can be approximately computed as

$$
\begin{align*}
E_{B} & =\frac{1}{2} \frac{Y_{N}}{1-\nu^{2}} W L \int_{-h_{N} / 2}^{h_{N} / 2} d z \frac{z^{2}}{R^{2}}+\frac{1}{2} \frac{Y_{p}}{1-\nu^{2}} W L \int_{-h_{N} / 2-h_{P}}^{-h_{N} / 2} d z \frac{z^{2}}{R^{2}}+\frac{1}{2} \frac{Y_{p}}{1-\nu^{2}} W L \int_{h_{N} / 2}^{h_{N} / 2+h_{P}} d z \frac{z^{2}}{R^{2}} \tag{4}\\
& \approx \frac{1}{2} \theta^{2} L \frac{Y_{p} h_{N}^{2} h_{P}}{2 W\left(1-\nu^{2}\right)} \tag{5}
\end{align*}
$$

Thus, $\kappa_{\text {face, } I} \approx L_{I} / W_{I}\left(Y_{p} h_{N}^{2} h_{P}\right) /\left(2\left(1-\nu^{2}\right)\right)$. For an active fold we obtain

$$
\begin{align*}
E_{B} & =\frac{1}{2} \frac{Y_{N}}{1-\nu^{2}} W L \int_{h_{P} / 2}^{h_{N}+h_{P} / 2} d z \frac{z^{2}}{R^{2}}+\frac{1}{2} \frac{Y_{p}}{1-\nu^{2}} W L \int_{-h_{P} / 2}^{h_{p} / 2} d z \frac{z^{2}}{R^{2}} \tag{6}\\
& \approx \frac{1}{2} \theta^{2} L \frac{Y_{N} h_{N}^{3}}{3 W\left(1-\nu^{2}\right)} \tag{7}
\end{align*}
$$

Thus, $\kappa_{\text {fold, } I} \approx L_{I} / W_{I} Y_{N} h_{N}^{3} /\left(3\left(1-\nu^{2}\right)\right)$. We expect that the width of an active fold is set by the size of the cut used to create the folding face whereas the width of a fold associated with bending a face is set by the size of a vertex which is also the width of the trenches. Therefore, we assume W_{I} is the same for both types of folds.

C. Stiffness ratios

In our numerical calculations, we divide all the moduli by $2 Y_{p} h_{p} A$ where A is the characteristic area. Neglecting the Poisson ratio, we use

$$
\begin{align*}
\kappa_{S, I} & \approx A_{I} / A \\
\kappa_{f o l d, I} & \approx \frac{L_{I}}{\ell}\left(\frac{Y_{N}}{Y_{p}} \frac{\ell}{W} \frac{h_{N}^{3}}{6 h_{p} A}\right) \tag{8}\\
\kappa_{f a c e, I} & \approx \frac{L_{I}}{\ell}\left(\frac{h_{N}^{2} \ell}{4 W A}\right)
\end{align*}
$$

where ℓ is the characteristic length of a fold. For $h_{P} \approx 0.2 \mu m, h_{N} \approx 5 \mu m, Y_{N} / Y_{p} \approx 5 \times 10^{-4}$, W $\approx 44 \mu m$, $A \approx 2 \times 10^{4} \mu \mathrm{~m}^{2}$, and $\ell \approx 260 \mu \mathrm{~m}$, we obtain $\kappa_{\text {fold, } I} \approx 2 \times 10^{-5} L_{I} / \ell$ and $\kappa_{\text {face }, I} \approx 2 \times 10^{-3} L_{I} / \ell$, or $K_{\text {fold }}=2 \times 10^{-5}$ and $K_{\text {face }}=2 \times 10^{-3}$

II. ENERGY OF NEARLY FLAT ORIGAMI

To derive the elastic energy for nearly flat origami in the small strain limit, we assume we have already added face folds so that the origami is built from only triangular faces. We then define a vector function of the vertex positions

$$
\begin{equation*}
f_{i}(\mathbf{u})=\frac{\sqrt{K_{i}}}{2}\left(\frac{L_{i}^{2}}{\bar{L}_{i}^{2}}-1\right) \tag{9}
\end{equation*}
$$

where $\mathbf{u}=\left(\mathbf{X}_{1}, \cdots \mathbf{X}_{V}\right)$ is a vector containing the position of all V vertices. Then the stretching energy is written as

$$
\begin{equation*}
E_{S}=\frac{1}{2} \sum_{i=1}^{E} f_{i}(\mathbf{u})^{2} \tag{10}
\end{equation*}
$$

We now expand $f_{i}(\mathbf{u})$ around the flat state \mathbf{u}_{0} to find

$$
\begin{equation*}
f_{i}\left(\mathbf{u}_{0}+\delta \mathbf{u}\right) \approx \partial_{n} f_{i}\left(\mathbf{u}_{0}\right) \delta u^{n}+\frac{1}{2} \partial_{n} \partial_{m} f_{i}\left(\mathbf{u}_{0}\right) \delta u^{n} \delta u^{m} \tag{11}
\end{equation*}
$$

We next construct an orthonormal basis in the space of possible edges indexed by $i,\left\{\sigma_{1, i}, \cdots, \sigma_{S, i}, e_{1, i}, \cdots, e_{E-S, i}\right\}$ where $\sum_{i} \sigma_{N, i} \partial_{n} f_{i}\left(\mathbf{u}_{0}\right)=0$. The $\sigma_{N, i}$ are, therefore, the components of the self-stresses of the linkage representing the origami structure.

Now the energy can be written as

$$
\begin{align*}
E_{S}= & \frac{1}{2} \sum_{N=1}^{E-S}\left[\sum_{i} e_{N, i}\left(\partial_{n} f_{i}\left(\mathbf{u}_{0}\right) \delta u^{n}+\frac{1}{2} \partial_{n} \partial_{m} f_{i}\left(\mathbf{u}_{0}\right) \delta u^{n} \delta u^{m}\right)\right]^{2} \tag{12}\\
& +\frac{1}{2} \sum_{N=1}^{S}\left(\sum_{i} \sigma_{N, i} \frac{1}{2} \partial_{n} \partial_{m} f_{i}\left(\mathbf{u}_{0}\right) \delta u^{n} \delta u^{m}\right)^{2}
\end{align*}
$$

Finally, we drop higher order contributions to the first term to obtain

$$
\begin{equation*}
E_{S}=\frac{1}{2} \sum_{N=1}^{E-S}\left(\sum_{i} e_{N, i} \partial_{n} f_{i}\left(\mathbf{u}_{0}\right) \delta u^{n}\right)^{2}+\frac{1}{8} \sum_{N=1}^{S}\left(\sum_{i} \sigma_{N, i} \partial_{n} \partial_{m} f_{i}\left(\mathbf{u}_{0}\right) \delta u^{n} \delta u^{m}\right)^{2} \tag{13}
\end{equation*}
$$

The first term is the harmonic contribution to the energy. For flat origami, we know that these correspond to the in-plane motions. On the other hand, the second term corresponds to the out-of-plane motion of the vertices. Finally, we note that the number of self-stresses S is given by the number of internal vertices V_{I}.

For small strains, we assume that the first term is zero so that only out-of-plane deformations can occur. Finally, we obtain an approximate energy for flat origami near the flat state as a sum of terms quartic in the vertical displacements of the vertices,

$$
\begin{equation*}
E_{S} \approx \frac{1}{8} \sum_{N=1}^{V_{I}}\left(\sum_{n=1}^{V} \sum_{m=1}^{V} Q_{N n m} h_{n} h_{m}\right)^{2} \tag{14}
\end{equation*}
$$

where h_{n} is the height of the $n^{t h}$ vertex above the $x y$-plane and

$$
\begin{equation*}
Q_{N n m}=\left.\sum_{i} \sqrt{K_{S, i}} \sigma_{N, i} \frac{\partial}{\partial h_{n}} \frac{\partial}{\partial h_{m}} \gamma_{i}\right|_{h_{n}=0} \tag{15}
\end{equation*}
$$

where γ_{i} is the strain of the $i^{t h}$ edge defined in the main text.

III. ALTERNATE MODEL WITH ELASTIC POLYGON FACES

The in-plane elastic energy for a Hookean, isotropic two-dimensional solid can be written as

$$
\begin{equation*}
E_{e l}=\frac{1}{2} \lambda\left(\sum_{i} \gamma_{i i}\right)^{2}+\mu \sum_{i j} \gamma_{i j}^{2} \tag{16}
\end{equation*}
$$

where $\gamma_{i j}=\partial_{i} u_{j}+\partial_{j} u_{i}$ and λ and μ are the Lamè coefficients. We assume that each triangular face has an energy of the form of Eq. (16). The in-plane elastic deformations u_{i} are determined by assuming the face has deformed affinely. For a triangular face on the $x y$-plane, this uniquely determines the displacement and allows us to estimate the elastic energy of arbitrarily deformed triangular faces.

To compare this to our linear spring edge model, we use the same method for plotting the phase diagrams for the birdsfoot as in the main body of the paper but with the above energy. Fig. 3 shows a side-by-side comparison of the resulting plots generated by the two different energies at the experimental values for default and softened faces. Minimizing the more complicated elastic polygon energy is more computationally costly, so the grid size has been reduced and grid squares with black lines denote points that failed to converge, with their color assigned based on neighboring squares. The agreement between models overall is good, even without fitting parameters.

FIG. 3: Phase diagrams for the birdsfoot with axes of the magnitude of the target angles, M, and the control parameter A, as described in the main body of the paper. The blue and red regions represent only one branch appearing while the center pink region represents the bistable region. The left column uses the linear spring edge model for face stretching while the right column uses the elastic polygon model. The top row has torsion spring constants corresponding to experiment with default faces while the bottom row corresponds to softened faces.

IV. PROGRAMMED TARGET ANGLES FOR THE RANDLETT BIRD SIMULATIONS

We use the same programmed fold angles for both the experiment and the simulations. They can be seen in Fig. 4.

Fold (by vertices)	Programmed Fold Angle
$\{1,11\}$	0
$\{1,15\}$	0
$\{1,17\}$	$-79 \pi / 180$
$\{2,15\}$	$143 \pi / 180$
$\{3,6\}$	$139 \pi / 180$
$\{3,7\}$	$-107 \pi / 180$
$\{3,12\}$	$139 \pi / 180$
$\{4,10\}$	$-13 \pi / 15$
$\{4,11\}$	$143 \pi / 180$
$\{5,6\}$	$-149 \pi / 180$
$\{6,7\}$	0
$\{6,8\}$	0
$\{6,18\}$	0
$\{7,12\}$	$-149 \pi / 180$
$\{8,7\}$	$107 \pi / 180$
$\{8,12\}$	0
$\{8,14\}$	$34 \pi / 45$
$\{8,17\}$	$-91 \pi / 180$
$\{9,6\}$	$-23 \pi / 30$
$\{9,8\}$	$34 \pi / 45$

Fold (by vertices)	Programmed Fold Angle
\{9, 17\}	0
\{9, 18\}	π
\{10, 11\}	$-17 \pi / 30$
\{10, 17\}	$-13 \pi / 15$
\{10, 19\}	0
\{11, 21\}	$41 \pi / 60$
\{12, 13\}	-149\%/180
\{12, 19\}	0
\{14,10\}	157 $/ 180$
\{14, 12\}	$-23 \pi / 30$
\{14, 17\}	0
\{15, 16\}	$-17 \pi / 30$
\{15, 17)	$43 \pi / 60$
$\{16,2\}$	$-13 \pi / 15$
\{16,9\}	$157 \pi / 180$
\{16, 18\}	0
\{17, 11\}	43m/60
\{17, 16\}	$-13 \pi / 15$
\{19, 14\}	π
$\{20,15\}$	$41 \pi / 60$

FIG. 4: (left) the Randlett bird with true folds in black and added face folds in lighter blue with vertices numbered. (right) the programmed fold angles used in the simulations. Folds are denoted by their end vertices.

[^0]: [] ${ }^{a}$ Department of Physics, University of Massachusetts Amherst, Amherst, MA, 01003
 []b Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003

 [] Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309. E-mail: ryan.hayward@colorado.edu
 [] e Department of Physics, Syracuse University, Syracuse, NY, 13244. E-mail: cdsantan@syr.edu

