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I. ELASTIC MODULI OF TRILAYER ORIGAMI

Our estimates of elastic moduli will be based on the estimates YN/Yp ∼ 5× 10−4 and hp/hN ∼ 0.04.

A. Estimate of the stretching energy of elastic origami

We estimate the elastic energy of a face according to
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γ2, (1)

where YN and Yp are the three dimensional Young’s moduli and hN is the thickness of the hydrogel layer, hP is the
thickness of each polymer layer, and γ is a dimensionless strain.
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FIG. 1: (left) a cross-section of a trilayer origami face showing the thicknesses and three-dimensional Young’s moduli. (right)
the area of each face adjacent to an edge that is closer to that edge than any other.

Then assuming that γ is approximately constant across a face and assuming YphP ≫ YNhN , we obtain

E ≈ YphpAγ2. (2)

For the area, A and an edge surrounded by two faces, we use the area in Fig. 1, which is conveniently one third the
total area of the two adjoining faces. For edges on the boundary, the corresponding stretching energy is obtained
from a single face. Comparing this to our spring energy,

E =
1

2
κSγ

2, (3)

we obtain an estimate κS,I ≈ 2YphpAI for the stretching modulus associated with edge I, where AI is the appropriately
chosen area.
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FIG. 2: Bending a face or a fold to have constant curvature R−1. The angle θ is identical to the apparent fold angle of the
fold. When bending a face (left), we assume the face bends along the midsurface whereas for an active fold, we assume the
surface bends along the stiffest layer.

B. The bending modulus of the folds

For an active fold, we assume the fold is bent along a width WI to a constant curvature R, so that R = WI/θ.
Therefore, the bending energy of a face can be approximately computed as
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Thus, κface,I ≈ LI/WI(Yph
2
NhP )/(2(1− ν2)). For an active fold we obtain
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Thus, κfold,I ≈ LI/WIYNh3
N/(3(1 − ν2)). We expect that the width of an active fold is set by the size of the cut

used to create the folding face whereas the width of a fold associated with bending a face is set by the size of a vertex
which is also the width of the trenches. Therefore, we assume WI is the same for both types of folds.

C. Stiffness ratios

In our numerical calculations, we divide all the moduli by 2YphpA where A is the characteristic area. Neglecting
the Poisson ratio, we use

κS,I ≈ AI/A
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4WA

)
where ℓ is the characteristic length of a fold. For hP ≈ 0.2µm, hN ≈ 5µm, YN/Yp ≈ 5 × 10−4, W ≈ 44µm,
A ≈ 2× 104µm2, and ℓ ≈ 260µm, we obtain κfold,I ≈ 2× 10−5LI/ℓ and κface,I ≈ 2× 10−3LI/ℓ, or Kfold = 2× 10−5

and Kface = 2× 10−3
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II. ENERGY OF NEARLY FLAT ORIGAMI

To derive the elastic energy for nearly flat origami in the small strain limit, we assume we have already added face
folds so that the origami is built from only triangular faces. We then define a vector function of the vertex positions

fi(u) =

√
Ki

2

(
L2
i

L̄2
i

− 1

)
(9)

where u = (X1, · · ·XV ) is a vector containing the position of all V vertices. Then the stretching energy is written as

ES =
1

2

E∑
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fi(u)
2. (10)

We now expand fi(u) around the flat state u0 to find

fi(u0 + δu) ≈ ∂nfi(u0)δu
n +

1

2
∂n∂mfi(u0)δu

nδum (11)

We next construct an orthonormal basis in the space of possible edges indexed by i, {σ1,i, · · · , σS,i, e1,i, · · · , eE−S,i}
where

∑
i σN,i∂nfi(u0) = 0. The σN,i are, therefore, the components of the self-stresses of the linkage representing

the origami structure.
Now the energy can be written as
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Finally, we drop higher order contributions to the first term to obtain
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The first term is the harmonic contribution to the energy. For flat origami, we know that these correspond to the
in-plane motions. On the other hand, the second term corresponds to the out-of-plane motion of the vertices. Finally,
we note that the number of self-stresses S is given by the number of internal vertices VI .

For small strains, we assume that the first term is zero so that only out-of-plane deformations can occur. Finally, we
obtain an approximate energy for flat origami near the flat state as a sum of terms quartic in the vertical displacements
of the vertices,
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where hn is the height of the nth vertex above the xy-plane and
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, (15)

where γi is the strain of the ith edge defined in the main text.

III. ALTERNATE MODEL WITH ELASTIC POLYGON FACES

The in-plane elastic energy for a Hookean, isotropic two-dimensional solid can be written as

Eel =
1

2
λ

(∑
i

γii

)2

+ µ
∑
ij

γ2
ij , (16)
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where γij = ∂iuj + ∂jui and λ and µ are the Lamè coefficients. We assume that each triangular face has an energy
of the form of Eq. (16). The in-plane elastic deformations ui are determined by assuming the face has deformed
affinely. For a triangular face on the xy−plane, this uniquely determines the displacement and allows us to estimate
the elastic energy of arbitrarily deformed triangular faces.

To compare this to our linear spring edge model, we use the same method for plotting the phase diagrams for the
birdsfoot as in the main body of the paper but with the above energy. Fig. 3 shows a side-by-side comparison of
the resulting plots generated by the two different energies at the experimental values for default and softened faces.
Minimizing the more complicated elastic polygon energy is more computationally costly, so the grid size has been
reduced and grid squares with black lines denote points that failed to converge, with their color assigned based on
neighboring squares. The agreement between models overall is good, even without fitting parameters.

FIG. 3: Phase diagrams for the birdsfoot with axes of the magnitude of the target angles, M , and the control parameter A,
as described in the main body of the paper. The blue and red regions represent only one branch appearing while the center
pink region represents the bistable region. The left column uses the linear spring edge model for face stretching while the right
column uses the elastic polygon model. The top row has torsion spring constants corresponding to experiment with default
faces while the bottom row corresponds to softened faces.
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IV. PROGRAMMED TARGET ANGLES FOR THE RANDLETT BIRD SIMULATIONS

We use the same programmed fold angles for both the experiment and the simulations. They can be seen in Fig. 4.

FIG. 4: (left) the Randlett bird with true folds in black and added face folds in lighter blue with vertices numbered. (right)
the programmed fold angles used in the simulations. Folds are denoted by their end vertices.


