Electronic Supplementary Information for

Controlled nucleation in evaporative crystallization using confined-vapor driven solutal Marangoni effect

Jeongsu Pyeon,^{*a*, \ddagger} Soon Mo Park,^{*b*, \ddagger} Dong Ki Yoon,^{*b*,*c*} and Hyoungsoo Kim^{*a*,*}

^aDepartment of Mechanical Engineering, KAIST, Daejeon 34141, Republic of Korea

^bGraduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

^cDepartment of Chemistry and KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

Fig. S1 Experimental setup. (a) Preparation of a liquid droplet with a constant 3 mm diameter on a cover glass. The wetting area is treated with a plasma to make locally hydrophilic. (b) Experimental setup for microparticle image velocimetry (PIV) measurements

Table S1 Critical Micelle Concentration (CMC) of CTAB, TTAB, or DTAB in an ethanol-water mixture at $T \approx 25$ °C

Surfactants	Chemical formula	CMC (mM, in ethanol : water = $30 : 70 \text{ vol.}\%$)
C ₁₆ TAB (CTAB) ¹	CH ₃ (CH ₂) ₁₅ N(Br)(CH ₃) ₃	2.9 ¹
$C_{14}TAB (TTAB)^1$	$CH_3(CH_2)_{13}N(Br)(CH_3)_3$	5.4 ¹
C_{12} TAB (DTAB) ¹	$CH_3(CH_2)_{11}N(Br)(CH_3)_3$	37.4 ²

 $^{1} \geq$ 99% purity, Sigma-Aldrich, U.S.A.

References

[1] S. K. Shah, S. K. Chatterjee and A. Bhattarai, Journal of Molecular Liquids, 2016, 222, 906-914.

[2] S. Aslanzadeh and A. Yousefi, Journal of Surfactants and Detergents, 2014, 17, 709-716.

^{0‡} J. Pyeon and S. M. Park contributted equally to this work.

^{0*} Corresponding author. E-mail: hshk@kaist.ac.kr; Tel: : +82 042-350-3049

^{0†} Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/cXsm00000x/

Fig. S2 Evaporation of DTAB-containing binary mixture droplets in an open space. Non-controllable nucleation sites (purple dashed-circles) in the vicinity of the (a) edge, (b) middle between the edge and center, and (c) center of 1 wt% DTAB in ethanol and water mixture (50:50 vol.%) droplets. Here, we compared all sequential POM images for the entire evaporation process of the DTAB droplets. Initial contact lines are displayed by white dashed-lines. All scale bars are 500 μm.

Hydrocarbon chain lengths (*L*_a) decreases

Fig. S3 Comparison of crystalline morphologies depending on hydrocarbon chain length L_a . We compared the crystal growth results of three different cationic surfactants [here, CTAB (C_{16} TAB), TTAB (C_{14} TAB), and DTAB (C_{12} TAB)] in the vicinity of the droplet contact line (the white dashed-lines). All crystalline patterns were observed after the surfactant (1 wt%)-containing ethanol-water mixture (50:50 vol.%) droplets totally evaporated on an open substrate. All scale bars are 200 μ m.

Fig. S4 Process of detecting a yellowish and bluish area of (a) POM images produced after 1 wt% CTAB-containing ethanol and water (50:50 vol.%) droplets evaporated in a confined (the first row) or an open system (the second row). We distinguished (b) Yellow- and (c) blue-colored crystalline regions exhibiting a relatively high light intensity highlighted as cyan areas in (b) and (c) [here, in the range of 105-255 (red) and 190-255 (blue) in (d), respectively] as shown in greenish areas of (d) red-and-blue histograms with a relative frequency value f_{local}/f_{max} . All scale bars are 500 µm.