Supporting Information for

Bijel rheology reveals a 2D colloidal glass wrapped in 3D

Herman Ching and Ali Mohraz*

Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697-2580, USA

E-mail: mohraz@uci.edu

Table of Contents

Figure S1. Scanning electron microscopy image of silica nanoparticles	S3
Figure S2. Scanning electron microscopy image of PHSA-PMMA particles	S3
Figure S3. Steady state shear moduli of 14BD/PC bijels prepared with different volume fraction of solids at different temperature	S4
Figure S4. Capillary potential between particles at the interface of bijels as a function of temperature	S5
Figure S5. Oscillatory frequency sweeps of 14BD/PC bijels prepared with different volume fraction of solids at different temperature	S6
Figure S6. Oscillatory amplitude sweeps of 14BD/PC bijels prepared with different volume fraction of solids at different temperature	S6
Figure S7. Small and medium strain frequency sweeps of 14BD/PC prepared with different volume fraction of solids at different temperature	S7-8
Figure S8. Small and medium strain frequency sweeps of 13BD/DOP capillary suspensions	S9

Fig. S1 A SEM micrograph of the SNPs used in the preparation of 14BD/PC bijels. Scale bar = 2 μ m.

Fig. S2 A SEM micrograph of the PHSA-PMMA particles used in the preparation of 13BD/DOP capillary suspensions. Scale bar = 10 μ m.

Fig. S3 Near-steady state G' (close symbols) and G" (open symbols) of 14BD/PC bijels with $\phi_{SNP} = 7.5 \times 10^{-3}$ and 1.5×10^{-2} at 12°C (orange) and 21°C (blue). The samples were measured at $\gamma = 1.0 \times 10^{-1}$ % strain and frequency $\omega = 6.3 \times 10^{-1}$ rad/s after a 2 h long aging period. Error bars represent the relative error (N ≥ 5).

Fig. S4 Capillary pair-potential (U_q) induced by local quadrupolar deformation of an interface with negative Gaussian curvature, plotted as a function of temperature for 14BD/PC bijels comprising $\phi_{SNP} = 7.5 \times 10^{-3}$ (close symbols) and 1.5×10^{-2} (open symbols). The blue markers present values calculated from the interfacial tension measurements, and the yellow lines are linear fits.

Fig. S5 Frequency response of 14BD/PC bijels comprising $\phi_{SNP} = 7.5 \times 10^{-3}$ (a) and 1.5×10^{-2} (b) at T = 12 (blue) and 21°C (orange). G' and G'' are marked by open and close symbols, respectively. The solid and dashed lines represent the MCT fits. The red lines indicate the rheometer inertia limit.

Fig. S6 Oscillatory amplitude sweeps showcasing the transition of G' (open symbols) and G" (close symbols) from linear to non-linear viscoelasticity for 14BD/PC bijels comprising $\phi_{SNP} = 7.5 \times 10^{-3}$ (a,b) and 1.5×10^{-2} (c,d). The blue and orange symbols represent measurements conducted at T = 12 and 21°C, respectively.

Fig. SI7 Frequency response of 14BD/PC bijels comprising $\phi_{SNP} = 7.5 \times 10^{-3}$ (a-l) and 1.5×10^{-2} (m-x) at small and medium strains. *G'* and *G''* are marked by open and close symbols, respectively. The dark to light colors (or a->f, g->l, m->r, s->x) represent 1.0×10^{-2} , 1.0×10^{-1} , 1.0, 2.0, 5.0, and 10% strains, respectively. The blue and orange symbols represent measurements at 12 and 21°C, respectively. The red lines indicate the rheometer inertia limit.

Fig. SI7 Continue.

Fig. SI8 Frequency response of 13BD/DOP capillary suspensions comprising ϕ_{PMMA} = 0.20 at small and medium strains. The strain amplitude of each frequency sweep is: (a) 1.0×10^{-2} %, (b) 2.5×10^{-2} %, (c) 4.0×10^{-2} %, (d) 1.0×10^{-1} %. *G* and *G* are marked by open and close symbols, respectively.