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The origin of the 63 090 unique sequences used in High Throughput Screening can be

explained by permutations and combinations of the fixed number of A type beads within

the monomer sequence. The total number of possible sequences is 20!
12!(8)!

= 125 970. However,

this treats forward and reverse sequences as distinct, thereby double-counting, hence it needs

to be halved to 62 985 sequences. Then, we need to add back the perfectly symmetrical

sequences. In order to count the perfectly symmetrical sequences, there would be 2 possible

cases wherein the 10th and 11th position would be occupied by either AA or BB and the other

2 possible cases AB or BA are not possible because then the sequence would be asymmetrical

(as it would then leave behind 7 A and 11 B to arrange in either of the sides of the 10th and

11th positions). Hence, the possible symmetrical sequences for the case where AA occupies

10th and 11th positions would be 9!
2·6!(3)! = 42. Similarly, for the case where BB occupies the

10th and 11th positions, the number of possible sequences would be 9!
2·5!(4)! = 63. Adding

these symmetrical sequences back, gives us a total of 62 985 + 42 + 63 = 63 090 possible

sequences.

Note that in practice, we arrived at this number by exhaustive enumeration and explicitly

checking for symmetry. This explanation is only provided post hoc for the satisfaction of

the interested reader.
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FIG. S1. Ranked list of sequences used to generate Fig. 8(b) in the main text.
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FIG. S2. Snapshots from the simulations in Fig. 8(b) in the main text, corresponding to the

targets selected by K-Means clustering. Coloring is determined by the local environment around

each particle, as described in Ref. 74. The left panels are closest to the target in the batch of

candidates (the best result of 25 samples), right panels are farthest away (the worst result of 25

samples). Labels correspond to those in Fig. 8(b).
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FIG. S3. Contrastive analysis of RNN inference on selected sequences from Fig. 8(b). Symbols

show Levenshtein edit distance versus predicted distance from target sequence in Z space. Blue

left triangles show minimum ||∆Z̃||2 at fixed edit distance from among all possible sequences (at

fixed composition), while orange right triangles show maximum.
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