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1 Correlation between drop height and fiber ten-
sion

Figure 1 Correlation between drop height and fiber tension A Normal-
ized fiber tension and drop height during the absorption of a single drop
of 2 µL on a fiber of initial radius R0 = 250 µm. Both the tension and
the drop height (measured from apex to apex, including the fiber radius)
decrease following very similar dynamics. B Direct correlation of the two
values. Once the drop is fully absorbed (at t = Tabs), the fiber slowly re-
laxes, which decreases H, while the tension remains almost constant.

2 Model development
We model our experiment in the framework of linear poroelasticity.
We consider a poroelastic gel-like material which is not subjected
to any mechanical load in its reference state. The initial concen-

tration of solvent molecules in the poroelastic material is homoge-
neous and given by c0 while the chemical potential is µ0. In the
deformed state, the system is described by the solvent concentra-
tion c, chemical potential µ and displacement field u⃗. In response
to the application of an external force, or when the poroelastic ma-
terial is brought into contact with a reservoir of solvent molecules
at a chemical potential different from µ0, the solvent is not in diffu-
sive equilibrium and will penetrate the material causing it to swell.
The conservation of the number of solvent molecules writes:

∂c
∂ t

+ ∇⃗ · J⃗ = 0 (1)

where J⃗ is the flux of the solvent in the gel and is driven by spa-
tial differences of the chemical potential. For simplicity, we will
assume that the flux J⃗ of small molecules is given by Darcy’s law:

J⃗ =−
(

k
ηΩ2

)
∇⃗µ (2)

where k is the permeability, η is the viscosity of the solvent and Ω

is the molar volume of the solvent.
The strain tension ε is defined as:

ε =
1
2

(
∇⃗u⃗+(⃗∇u⃗)t

)
(3)

In the framework of linear poroelasticity, the stress tensor σ is
given by:

σ = 2G
(

ε +
ν

1−2ν
Tr(ε)I

)
− µ −µ0

Ω
I (4)

where G is the shear modulus, ν is the poroelastic Poisson ratio
that characterizes the ability of a gel to absorb its solvent and I is
the identity tensor. We assume that solvent and polymer molecules
are incompressible and consequently the local volume variation
is given by the local variation of the solvent concentration. This
molecular incompressibility condition reads:

Tr(ε) = (c− c0)Ω (5)

The mechanical equilibrium in the bulk of the poroelastic material
is described by the Navier equations:

∇⃗ ·σ = 0⃗ (6)

Combining the equations above we get:

∂c
∂ t

= D∗
∆c (7)

where

D∗ =
2(1−ν)Gk
(1−2ν)η

(8)

is an effective diffusion coefficient (also called the cooperative dif-
fusion coefficient) and ∆ is the Laplace operator.Note that the ma-
terial parameters G, k and thus D∗ are effective parameters that
depend on the initial state of the gel. In a nonlinear theory, they
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are also functions on the local deformation of the gel. Within the
framework of linear poroelasticity however, we will assume that
the deformed state is close enough to the initial state such that G,
k and thus D∗ can be treated as constant material parameters. Fi-
nally, combining (3, 4, 5) and (6) and under the assumption that
c0 is homogeneous, we get:

GΩ

(
∆⃗u+

Ω

1−2ν
c⃗
)
= ∇⃗µ (9)

We opt for a traditional dimensionality reduction and we will
limit ourselves to very thin fibers and focus on timescales larger
than R2/D∗. The goal of this approximation is to focus on a regime
where the concentration, and hence also the chemical potential,
are approximately constant throughout the radius of the fiber such
that the problem will become effectively 2D (z and time t). Hence
we hypothesize that:

c(r,z, t) = c̄(z, t) (10)

µ(r,z, t) = ¯µ(z, t) (11)

For consistency with our approximation, we assume that physical
quantities vary over a typical lengthscale L in the axial direction z
while they vary over a typical lengthscale R in the radial direction
r with of course L >> R; at leading order in R/L, the r-component
of the mechanical equilibrium equations (9) thus implies:

1
r

∂

∂ r

(
r

∂ur

∂ r
− ur

r2

)
= 0 (12)

The only solution of (12) that vanishes at r = 0 is of the form:

ur(r,z, t) = rūr(z, t) (13)

The molecular incompressibility (5) further implies that the axial
displacement is independent of r at leading order:

uz(r,z, t) = ūz(z, t) (14)

From the results above, we deduce that the radial stress σrr and
shear stress σrz are solely functions of z and t, at leading order in
R=L. Since both of these quantities vanish at the free surface, by
virtue of the stress free boundary condition at the surface (σ · n⃗ = 0⃗
at r = R), we have, again at leading order in R=L:

σrr = σrz = 0 (15)

We can thus write:

ur(r,z, t) = r
2(c̄− c0)GΩ−σzz(t)

6G
(16)

∂ ūz

∂ z
=

(c̄− c0)GΩ−σzz(t)
6G

(17)

µ̄(z, t) = µ0 +
2GΩ2(1+ν)

3(1−2ν)
(c̄− c0)−

Ωσzz(t)
3

(18)

We find the functions c and σzz(t) from the boundary conditions
and transport equation which reads in cylindrical coordinates:

∂ c̄
∂ t

+
1
r

∂ (rUr)

∂ r
+

∂Jz

∂ z
= 0 (19)

where Jz is the flux in the lengthwise direction. Integrating (19)
over the section of the fiber we find:

∂ c̄
∂ t

+
2Js

r
R

+
∂Jz

∂ z
= 0 (20)

where Js
r is the surface flux from the drop to the fiber. Beneath

the drops, it is simply proportional to the difference between the

chemical potential in the drop µd and the chemical potential in the
fiber µ0. Outside the drops, we assume that the fiber is imperme-
able and this flux is zero. Here we express the flux in term of the
concentration field c̄:

Js
r =−k1d(z, t)

ηΩ2h
(µb − µ̄)

=−k1d(z, t)
ηΩ2h

(
µb −µ0 +

Ωσzz(t)
3

− 2GΩ2(1+ν)

3(1−2ν)
(c̄− c0)

) (21)

where h is a length (presumably microscopic) that characterizes
the interface such that the quantity k/2h is a surface permeability.
The function 1d(z, t) is the indicative of the drops: it is a function
which value is 1 if there is a drop on the fiber at position z and
time t and which value is zero otherwise. We finally obtain the
following equation which is essentially a diffusion equation with a
source term at the position of the drops:

∂ c̄
∂ t

= D
∂ 2c̄
∂ z2 +

2D
Rh

(cmax(t)− c̄)1d(z, t) (22)

where the time dependent equilibrium concentration cmax(t) is:

cmax(t) = c0 +
3(1−2ν)

2GΩ2(1+ν)

(
µb −µ0 +

Ωσzz(t)
3

)
(23)

The effective diffusion coefficient D appearing in (22) is D =
2kG(1+ν)
3η(1−2ν)

. Finally we need an equation for the tension in the
fiber. This equation is provided by the boundary condition at
the end of the fiber. Here we focus on a fiber that is initially
stretched and whose ends are subsequently held fixed. Since the
displacements uz(−L, t) and uz(L, t) at the ends of the fiber are
fixed, we can set uz(0, t) = 0 without loss of generality and write
−uz(−L, t) = uz(L, t) = εL. Integrating (16) with respect to z in the
interval [−L,L] we obtain:

σzz(t) = 3Gε − GΩ

2L

∫ L

−L
(c̄− c0)dz (24)

3 Supplementary Movies
S1: Spontaneous localized fluid release: Two drops of V = 2µl
are placed on a PVS Fiber of initial radius R = 250µm. After
fully swelling the region below and between the two drops, we
see a new drop forming in the center as fluid is released from
the fiber (localized deswelling). The two initial drop continue to
be absorbed and/or interact with the center drop. The time is
indicated in hh:mm:ss

S2: Swelling induced coalescence: Two drops of V = 1.5µl
are placed on a PVS Fiber of initial radius R = 250µm. After fully
swelling the region below and between the two drops, one of the
drops becomes very mobile. Eventually, the two drops coalesce
completely forming a single drop that will slowly be absorbed.
The time is indicated in hh:mm:ss

S3: Fluid release when reducing the tension in a fiber: A
fiber of unstretched radius R = 250µm is fully swollen under very
high tension (initial stretch ε0 = 1). It is then dried on the surface.
At t = 0 (start of the video) the length of the fiber is reduced
within a few seconds so that the tension drops almost instantly.
Within minutes we observe drops appearing on the fiber as fluid is
released. The time is indicated in hh:mm:ss
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S4: Provoked coalescence: Two drops of V = 2µ l are placed
on a PVS Fiber of initial radius R = 250µm. The time is indicated
in hh:mm:ss. The movie starts as the center at z = 0 is already
saturated with fluid. As drops are added far from the center
at t = 40 min they are quickly absorbed by swelling the fiber
radially. The tension in the fiber is thus dropping very quickly.
This decrease in tension provokes the coalescence of the two
initial drops right after this tension drop at t = 45 min.
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