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Supplementary Information

The supplementary information provides technical details of the
molecular dynamics simulations performed in this work and re-
sults for nanoscale capillary bridges of different volume that ver-
ify the key assumptions in the theoretical model described in the
main text.

Molecular Dynamics simulations

The molecular dynamics (MD) simulations in this work are per-
formed with the open-source code LAMMPS.1 The simulations
are performed in the NVT ensemble, with a fixed number of wa-
ter molecules and simulation domain volume with the tempera-
ture regulated by a standard Berendsen thermostat. The water
molecules are confined between two static walls that are sepa-
rated at fixed height and fully bound the 3D simulation domain
in the z-direction; periodic boundary conditions are applied in
the x- and y-directions. Conventional Lennard-Jones (L-J) and
Coulomb potentials determine the interactions between the mod-
eled atomic species: (O) oxygen, (H) hydrogen, and (S) generic
solid atoms. After an initial relaxation stage (1 ns) for which sim-
ulations are performed with a small timestep of 1 fs, the timestep
is increased to 2 fs for the remaining 4 ns of the simulation.

The water molecules are modeled as a rigid assembly of oxy-
gen and hydrogen atoms with a fixed dipole moment and dihe-
dral angle using the conventional TIP4P/Ew model,2 which at
the simulated system temperature T = 300 K reproduces the p-n-
T phase diagram and structural properties (e.g., radial correlation
function) experimentally observed for bulk liquid water,3,4 with
a liquid mass density ρ = 964 kg/m3 that corresponds to a bulk
number density nb = 0.0322−3, and a liquid-vapor surface tension
γ = 65.4 mN/m.5

The solid walls are modeled as a “frozen” crystalline struc-
ture of uncharged nonpolar atoms with an effective diameter
σS = 0.281 nm that are arranged in a face-centered cubic (fcc)
lattice with constant spacing ∆x = 0.35 nm. The modeled oxy-
gen atoms have a diameter σO = 0.3164 nm that parameterizes
the L-J potential while the H+ ions are modeled as point-like
charges. The effective diameter of the modeled water molecules
is ∆xOO = 21/6σO = 1.015∆x nearly equal to the fcc lattice unit of
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modeled solid surfaces. For the conditions modeled here, the L-
J interaction energy between water molecules is εOO ≃ 0.27kBT ,
while the interaction energy between the solid and oxygen atoms
εSO ≃ 0.83kBT is higher. The set interaction energies result in
strong affinity of water molecules to the solid and hydrophilic be-
havior of the modeled solid surfaces.

In our MD simulations, the distance between the centers of the
solid atoms that form the wall surfaces is hMD = j∆x, where j is an
integer number of lattice units. The solid-liquid interface in MD
simulations (see Figure 1 in the main text) has a finite thickness
∆x ≃ 21/6(σO +σS)/2 that is approximately equal to one lattice
unit and is determined by the effective diameters of the oxygen
atoms in the water molecules and the solid atoms forming the
walls. The height of the liquid bridge in the MD simulations is
defined as h = hMD −∆x, considering that in the sharp-interface
continuum representation the top and bottom surfaces lie at the
position of contact between the water molecules and solid atoms
where |z|= zw = h/2 (cf. Figure 1b in the main text).

Number density and radius profiles

The bridge radius in the MD simulations is determined by a sys-
tematic algorithm that assumes a constant number density of wa-
ter molecules within each slab. For a slab of height ∆z centered
at z and assuming that the number density n(z) inside each slab is
constant the k-th order moment of area is

M(k)(z) = n(z)∆z
∫ r(z)

0
sk2πsds =

2π

k+2
n(z)∆zRk+2(z) (1)

where r(z) is the local radius of the bridge. For k = 0, 1, 2, we
get:

M(0)(z) = πn(z)∆zr2(z)
M(1)(z) = 2

3 πn(z)∆zr3(z)
M(2)(z) = 1

2 πn(z)∆zr4(z)
(2)

The local number density and radius are thus obtained from solv-
ing the set of equations

n(z) =
M(0)(z)

π∆zr2(z)
, (3)

and

r(z) =
4M(2)(z)
3M(1)(z)

. (4)

The moments of area M(k) (k = 0,1,2) in eqs. 3–4 are computed
in MD simulations from the position of the oxygen atoms within
each slab reported at every time step, and averaging during the
final 2 ns of the full simulation.
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Fig. 1 Number density pro�les and height-dependent equilibrium contact

angles. (a) Local number density pro�le modeled by eq. 5 in the main

text and reported by MD simulations of nanoscale water bridges of height

h= 9∆x≃ 3.2 nm and three di�erent volumes V/V0 = 1, 2, and 3 (V0 = 0.37
zL). MD simulation results are indicated with markers (see legend). (b)

Number density n1 and thickness δ of the �rst hydration layer employed

in analytical estimates for the height-dependent equilibrium contact angle

θY (h) given by eq. 4 in the main text. The bulk density is nb = 0.0322 −3

for all the modeled conditions.

Nanoscale water bridges with di�erent volumes

The conditions studied in this work correspond to capillary
bridges of nanoscale height h and sufficiently large volumes V ≫
πhσ2 so that the local radius r(z) ≫ σ is much larger than the
molecular scale. Under these conditions the number density n(z)
and height-dependent contact angle θY (h) given by analytical esti-
mates are independent of the bridge volume. The MD simulations
aim to model the conditions studied by the proposed analytical
description (eqs. 1-5 in the main text).

We therefore performed MD simulations using a sufficiently
large number of water molecules N = 12,000, 24,000, and 36,000
so that for the studied bridge heights h = 4-19 ∆x and water vol-
umes V ≃ N/nb = 0.37-1.11 zL, the characteristic bridge radius
R =

√
V/πh > 10∆x is always larger than ten molecule diameters.

As expected for the simulated conditions, the number density pro-
files obtained from MD simulations show no significant variation
with respect to the bridge volume (cf. Figure 1a). The model pa-
rameters reported in Figure 1b can be thus employed to account
for MD results for the three studied volumes, with the smallest
simulated volume V0 = 0.37 zL corresponding to the lower bound
for the validity of the analytical model assumptions.

The local radius profile r(z) and slopes ṙ(z) computed from MD
simulations for the studied three different volumes and analytical
estimates using the model parameters reported in Figure 1b are
shown in Figure 2. The results reported in Figure 2 correspond to
nanoscale bridges of heights as small as four water molecules and
with volumes that are sufficiently large so that the neck radius
r0 ≳ 10∆x is larger than 10 water molecules even for the the case
with the smallest volume (e.g., see Figure 2 in the main text).
The MD results in Figure 2 are compared with predictions from
the conventional YL equation (eq. 1 in the main text) for V = V0

and using the height-dependent contact angle predicted by eq.4
in the main text and reported in Figure 1b.
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Fig. 2 Results for water bridges of di�erent volume. (a) Dimensionless

local radius variation ∆r̄ = (r(z)−r0)/h, where r0 ≡ r(0) is the neck radius.

(b) Local radius slope pro�le ṙ(z). Markers indicate MD simulation results

for water bridges of three di�erent heights h/∆x = 4, 8, and 19 (∆x = 0.35
nm) and volumes V/V0 = 1, 2, and 3 (V0 = 0.37 zL). The dashed lines

report numerical solutions of the YL equation (eq. 1 in the main text)

with the height-dependent equilibrium contact angles θY (h) given by eq.4

in the main text.

Notes and references

1 S. Plimpton, P. Crozier and A. Thompson, Sandia National Lab-
oratories, 2007, 18, 43.

2 H. W. Horn, W. C. Swope, J. W. Pitera, J. D. Madura, T. J. Dick,
G. L. Hura and T. Head-Gordon, J. Chem. Phys., 2004, 120,
9665–9678.

3 H. W. Horn, W. C. Swope and J. W. Pitera, J. Chem. Phys., 2005,
123, 194504.

4 C. Vega, J. Abascal and I. Nezbeda, J. Chem. Phys., 2006, 125,
034503.

5 C. Vega and E. De Miguel, J. Chem. Phys., 2007, 126, 154707.

2 | 1�2Journal Name, [year], [vol.],


