
Supporting Information

Understanding the effect of liquid crystal content on the phase behavior and mechanical properties of liquid crystal elastomers

Morgan Barnes^{*a*}, Sueda Cetinkaya^{*b*}, Alec Ajnsztajn^{*a*}, and Rafael Verduzco^{*ab*}

^{*a*}Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA ^{*b*}Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA

Figure S1 TOP Photograph of laser-cut and assemble fluidic channel embosser. **Bottom** Schematic of LCE fluidic channel synthesis. First, a flat LCE film is synthesized which is embossed into a fluidic channel and UV cured to program the shape change. The LCE is then adhered to glass using PDMS. The channel collapses and raises when heated and cooled, respectively.

	RM257 mg [mmol]	EDDET mg [mmol]	PETMP mg [mmol]	TEGDA mg [mmol]	HHMP mg	DPA 2 wt% in CHCl3 mg	CHCl ₃ mg	mass % RM257
0 mol% acrylate	588	124.09	55.45	0	2.94	181.34	235.2	76.6%
from TEGDA	[1]	[0.68]	[0.1126]	[0]	2.94			
5 mol% acrylate	588	130.62	58.37	15.91	3.02	190.88	235.2	74.15%
from TEGDA	[1]	[0.71]	[0.1196]	[0.05]	3.02			
10 mol% acrylate	588	137.87	61.62	33.58	3.11	201.49	235.2	71.61%
from TEGDA	[1]	[0.75]	[0.1262]	[0.1]	5.11	201.49		
15 mol% acrylate	588	145.99	65.24	53.35	3.26	213.34	235.2	68.69%
from TEGDA	[1]	[0.80]	[0.1337]	[0.15]	5.20	215.54		
20 mol% acrylate	588	155.11	69.32	75.58	3.32	226.68	235.2	66.21%
from TEGDA	[1]	[0.85]	[0.1420]	[0.20]	5.52	220.00		

 Table S1 Table of reagent amounts used to synthesize TEGDA LCEs.

	RM257	EDDET	PETMP	LiTFSI	HHMP	TEA	CHCl ₃ mg	mass % RM257
	mg	mg	mg	mg	mg			
	[mmol]	[mmol]	[mmol]	[mmol]				
0 mol% Li+/EO	588	124.09	55.45	0	2.94	3.62	705.6	76.6%
	[1]	[0.68]	[0.1126]	0				
5 mol% Li+/EO	588	124.09	55.45	19.52	2.94	3.62	705.6	74.70%
	[1]	[0.68]	[0.1126]	[0.068]				
7.5 mol% Li+/EO	588	124.09	55.45	29.28	2.94	3.62	705.6	73.79%
	[1]	[0.68]	[0.1126]	[0.102]				
10 mol% Li+/EO	588	124.09	55.45	39.04	2.94	3.62	705.6	72.90%
	[1]	[0.68]	[0.1126]	[0.136]				
12.5 mol% Li+/EO	588	124.09	55.45	48.80	2.94	3.62	705.6	72.02%
	[1]	[0.68]	[0.1126]	[0.170]				
17.5 mol% Li+/EO	588	124.09	55.45	68.32	2.94	3.62	705.6	70.35%
	[1]	[0.68]	[0.1126]	[0.238]	2.94			
22.5 mol% Li+/EO	588	124.09	55.45	87.85	2.94	3.62	705.6	68.74%
	[1]	[0.68]	[0.1126]	[0.306]	2.94			
27.5 mol% Li+/EO	588	124.09	55.45	107.37	2.94	3.62	705.6	67.20%
	[1]	[0.68]	[0.1126]	[0.374]	2.94			

Table S2 Table of reagent amounts used to synthesize lithiated LCEs

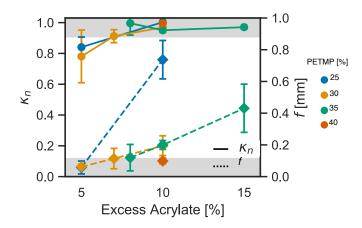
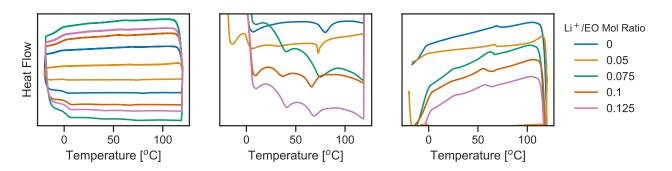



Figure S2 Optimization of the normalized curvature and flatness of an LCE with 10 mol % TEGDA.

Figure S3 DSC curves of LCEs with increasing amounts of lithiation. The middle plot curve is a zoomed in region of the heating trace, and left plot is a zoomed in region of the cooling trace.