Supporting Information

Complete stress release in monolayer ALD-Al₂O₃ film based on mechanical equilibrium homeostasis to realize a bending radius of 1mm

Ze Li¹, Zhenyu Wang¹, Ziqiang Chen¹, Jing Feng¹, Jintao Wang¹, Siyu Fan¹, Hongbo Sun^{1,2}, and Yu Duan^{1*}
1 State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun130012, China
2 State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China
*Corresponding author. E-mail: duanyu@jlu.edu.cn

1, MATLAB image processing and curvature calculation code: im=imread('ps.png'); im=rgb2gray(im); thresh = graythresh(im); im=im2bw(im,thresh); set(0,'defaultfigurecolor','w') imshow(im) [y,x]=find(im==0);y=max(y)-y;y=fliplr(y); plot(x,y,'r.','Markersize', 2); disp(' Please click on the two vertices (upper left and lower right points) of the actual coordinate box in Figrure, i.e. points A and B. '); [Xx,Yy]=ginput(2); min x=input(' ') max x=input(' ') min y=input(') max y=input(' ') $x=(x-Xx(1))*(\max x-\min x)/(Xx(2)-Xx(1))+\min x;$

```
y=(y-Yy(1))*(min_y-max_y)/(Yy(2)-Yy(1))+max_y;
plot(x,y,'r.','Markersize', 2);
axis([min x,max x,min y,max y])
rate x=0.08;
rate y=0.05;
[x uni,index x uni]=unique(x);
x uni(1:floor(length(x uni)*rate x))=[];
x uni(floor(length(x uni)*(1-rate x)):end)=[];
index x uni(1:floor(length(index x uni)*rate x))=[];
index x uni(floor(length(index x uni)*(1-rate x)):end)=[];
[mxu, ~]=size(x uni);
[mx, \sim] = size(x);
for ii=1:mxu
     if ii==mxu
         ytemp=y(index x uni(ii):mx);
     else
         ytemp=y(index x uni(ii):index x uni(ii+1));
     end
     threshold1=mean(ytemp)-std(ytemp);
     threshold2=mean(ytemp)+std(ytemp);
     ytemp(find(ytemp<threshold1))=[];</pre>
     ytemp(find(ytemp>threshold2))=[];
     thresholdy=(max y-min y)*rate y;
     ytemp(find(ytemp>max y-thresholdy))=[];
     ytemp(find(ytemp<min y+thresholdy))=[];</pre>
     y uni(ii)=mean(ytemp);
end
x uni(find(isnan(y uni)))=[];
y_uni(find(isnan(y_uni)))=[];
figure,plot(x uni,y uni),title(' The scan curve obtained after processing ')
axis([min x,max x,min y,max y])
curve val(1,:)=x uni';
curve val(2,:)=y uni;
[p,s]=polyfit(curve val(1,:),curve val(2,:),4);
[y fit,DELTA]=polyval(p,x uni,s);
figure,plot(x_uni,y_fit),title(' The fitted curve ')
axis([min x,max x,min y,max y])
for i=1:(length(x_uni)-1)
   dx(i)=x_uni(i+1)-x_uni(i);
   dy(i)=y fit(i+1)-y fit(i);
   dddy(i) = dy(i)/dx(i);
```

end

```
for i = 1 : (length(x_uni)-2)
    ddx(i) = dx(i+1) - dx(i);
    ddy(i) = dy(i+1) - dy(i);
    K(i)=abs((dx(i)*ddy(i)-dy(i)*ddx(i)))/((dx(i)*dx(i)+dy(i)*dy(i))^1.5);
end
K_d = 1./K;
figure(4);
plot(x_uni,y_fit);
axis([0 2.5 -0.2 1.2]);
```


Fig. S1 Schematic diagram of normal growth ALD-Al₂O₃. (a) Deposition of ALD-Al₂O₃ on the PI substrate surface; (b) inward curling of the sample due to compressive residual stress; (c) OLED device preparation after reaching mechanical equilibrium; (d) numerous residual stresses inside the device after top encapsulation.

Fig. S2 (a-b) Cross-sectional contours and curvature of ALD-Al₂O₃ prepared by 7mm and 9mm pre-bending; (c-d) Curves after MATLAB image processing.

Heat treatment time (min)	Curvature (mm ⁻¹)					
0	1.138	1.138	1.137	1.138	1.139	
5	0.738	0.738	0.737	0.737	0.739	
10	0.336	0.336	0.335	0.336	0.337	
20	0.005	0.004	0.004	0.005	0.005	
30	0.005	0.004	0.004	0.004	0.005	

Table S1. Data of cross-sectional curvature with different heat treatment times for multiple

 sets of samples prepared by 5-mm pre-bending

Table S2. Data of cross-sectional curvature with different heat treatment times for multiple
 groups of samples prepared by 7mm pre-bending

Heat treatment time (min)	Curvature(cm ⁻¹)					
0	0.784	0.783	0.783	0.784	0.785	
5	0.339	0.338	0.339	0.340	0.340	
10	0.243	0.243	0.243	0.243	0.245	
20	0.189	0.188	0.190	0.191	0.191	
30	0.193	0.192	0.192	0.193	0.194	

Fig. S3 (a-b) Cross-sectional contour curves of samples prepared by 7mm and 9mm prebending process with different heat treatment times after MATLAB image processing

Sample	Crack density (mm ⁻¹)	Sample	Crack density (mm ⁻¹)	
Normal growth	36.2	Normal growth/Heat treatment	30.5	
3-mm	10.5	3-mm pre-bending/	0	
pre-bending	10.5	Heat treatment	U	
5-mm	16.1	5-mm pre-bending/	0	
pre-bending	10.1	Heat treatment		
7-mm	20.2	7-mm pre-bending/	20.6	
pre-bending	50.2	Heat treatment	20.0	
9-mm	24.0	9-mm pre-bending/	24.2	
pre-bending	34.8	Heat treatment	24.2	

 Table S3. Crack density data from optical microscopy.

Fig. S4 (a-b) Cross-sectional contours and curvature of 7mm and 9mm pre-bending prepared samples after heat treatment; (d-f) Curves after MATLAB image processing

Fig. S5 (a) Schematic diagram of the bending equipment operation; (b-c) schematic diagram of sample bending 0° and 180°.

Fig. S6 The surface SEM image of ALD-Al₂O₃ deposited by normal growth and 5 mm prebending heat treatment process with 10,000 bending cycles at 3 mm bending radius

Fig. S7 Surface crack density curves of ALD-Al₂O₃ grown by normal growth and 5-mm prebending heat treatment processes after bending at different bending radii.

Bending curvature	Crack density (mm ⁻¹)					
0.8	113.3	121.7	126.7	125	118.3	123.2
1	109.8	113.2	123.3	128.8	123.2	130.5
1.3	123.4	129.1	124.3	124.3	118.6	119.5
1.6	127.7	123.7	123.1	118.2	114.8	112.3
2	129.8	114.2	116.5	129.8	123.2	126.5

Table S4. Crack density data at six regions in the center of the bend with a smaller bending radius for ALD-Al₂O₃ deposited by the normal growth process.

Table S5. Crack density data at six regions in the center of the bend with a smaller bending radius for ALD-Al₂O₃ deposited by 5-mm pre-bending heat treatment process.

Bending curvature	Crack density (mm ⁻¹)					
1	59.6	52.3	55.2	63.2	63.3	61.6
1.3	57.8	56.1	53.1	69.4	50.1	51.7
1.5	66.63	59.96	56.62	69.95	63.28	56.61
1.8	65.4	55.1	58.5	60.1	59.3	61.3
2	69.9	56.6	59.9	53.2	66.6	59.9

Fig. S8 The optical transmittance of ALD-Al₂O₃ films prepared by normal growth and 5-mm pre-bending heat treatment processes.