Supplementary Information

1 Physico-chemical characteristics of studied pure liquids

	Molar mass	Density	Dynamic viscosity	Surface tension	Refractive index
	(g/mol)	at 298 K (g/mL) [1]	(mPa.s)	(mN/m)	[1]
Cyclopentanol	86.13	0.948	10.1	32.7	1.4530
Decane	142.28	0.730	0.8	23.7	1.4102
PDMS	$\approx \! 116000$	0.973	58 380 (from supplier)	20.5	1.4035

[1] David R. Lide. CRC Handbook of Chemistry and Physics, 75th edition. CRC Press, Boca Raton, Fl, 1994.

2 Surface tension of different mixtures

Figure 1 Surface tension of the decane/cyclopentanol mixture (left) and PDMS/decane mixture (right).

3 Viscosity of the decane/cyclopentanol mixture

Figure 2 Viscosity of a decane/cyclopentanol mixture as a function of decane mass fraction. Measurements were done with a rheometer (Low Shear 400, Lamy Reology).

4 Phase diagram of the ternary mixture

Figure 3 Phase diagram of the ternary mixture (mass fractions). Red dots correspond to experimental data. The dasehd line is a guide for the eyes. The hatched zone represents the range of compositions used in the paper. To obtain experimental data, we first mix PDMS and decane at a given ratio and then add cyclopentanol until the solution becomes turbid. The solution is constantly stirred during the experiment.It is repeated for different PDMS / decane ratios. High PDMS ratios can not be explored as the solution becomes too viscous to be stirred easily.