Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2022

Supply Information

Fig. S1 Synthetic rout and plausible chemical structure of SMP inferred from FT-IR (Fig. 1(b)) and previous patents,^{26,27} where hard segments, composed of MDI and reactants of bisphenol A and ethylene oxide, connected to soft segments of polypropylene glycol.

Fig. S2 (a) Time dependence of q generated at the 1st (blue), 5000th (green), and 10000th (red) bending at d = 7 mm and v = 3.3 mm s⁻¹ and (b) change in q with number of bending cycles.

Fig. S3 (a) Time dependence of *V* generated at the 1st (blue), 5000th (green), and 10000th (red) bending at d = 7 mm and v = 3.3 mm s⁻¹ and (b) change in *V* with number of bending cycles.

Fig. S4 Relation between bending displacement (*d*) and strain difference ($\Delta \varepsilon$) of ionic SMP gel sensor (L = 10 mm and t = ca. 300 µm).

Fig. S5 Calculations of overall net positive charge (Q_+) , overall net negative charge (Q_-) , and total charge $(Q = Q_+ + Q_-)$ stored in the ionic SMP gel $(W_{IL} = 25 \text{ wt\%})$ under bending deformation $(d = 7 \text{ mm and } v = 3.3 \text{ mm s}^{-1})$.

Fig. S6 Current-voltage curve of ionic SMP gel sensor ($W_{IL} = 25 \text{ wt\%}$) measured at a sweeping rate of 10 mV s⁻¹ with an electrochemical impedance system (1255WB, Solartron) and capacitance was evaluated by CorrView software (Solartron).