Supplementary Information

Highly Sensitive Fluorescence Sensor for Ammonia Detection Based on Aggregation-Induced Emission Luminogen Doped Liquid Crystals

Xiyun Zhan, ^{ab} Yanjun Liu, ^a Fei Wang, ^a Dongyu Zhao, *c Kun-Lin Yang *b and Dan Luo *a

^a Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen, Guangdong 518055, China. E-mail: luod@sustech.edu.cn

^b Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore. E-mail: cheyk@nus.edu.sg

^c School of Chemistry and Environment, Beihang University, Xueyuan Road 37, Beijing 100191, China. E-mail: zhaodongyu@buaa.edu.cn

Fig. S1 (a) POM images and fluorescence images of the free-standing AIEgen-doped LC film at 10 μ m in contact with air upon exposure to 0 ppm and 1000 ppm ammonia vapor. (b) Response of the average fluorescence intensity to different ammonia concentrations from 0 to 1000 ppm.

Fig. S2 Fluorescence spectra of the (a) 10 μ m and (b) 20 μ m LC cells consist of 0.1 wt% AIEgen-doped LC at the homeotropic and random alignment state. Excitation wavelength: 365 nm.

Fig. S3 Optical images of the AIEgen-doped LC system in different concentration of SDS solution.

Fig. S4 Absorbance spectrum of the AIEgen-doped LC based sensor before and after ammonia exposure.

NH₃ Concentration

b

a

NH₄OH Concentration

Fig. S5 Optical images of the AIEgen-doped LC based sensor in the presence of different concentrations of (a) ammonia vapor and (b) aqueous ammonia.