Soft Matter

ARTICLE TYPE

Cite this: DOI: 00.0000/xxxxxxxxx

Supplementary Material for: Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[†]

Raheel Ahmad^a, Albert J Bae^{a,b}, Yu-Jung Su^a, Samira Goli Pozveh^a, Eberhard Bodenschatz^{a,c,d}, Alain Pumir^{a,e}, and Azam Gholami^{a*}

Received Date Accepted Date

DOI:00.0000/xxxxxxxxx

^aMax Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany.

^bLewis & Clark College, Portland, Oregon, USA.

^cInstitute for Dynamics of Complex Systems, University of Göttingen, Göttingen 37077, Germany.

^d Laboratory of Atomic and Solid-State Physics and Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.

^e Laboratoire de Physique, Ecole Normale Supérieure de Lyon, Université Lyon 1 and CNRS, F-69007 Lyon, France.

^{*}E-mail: azam.gholami@ds.mpg.de

Supplementary figures

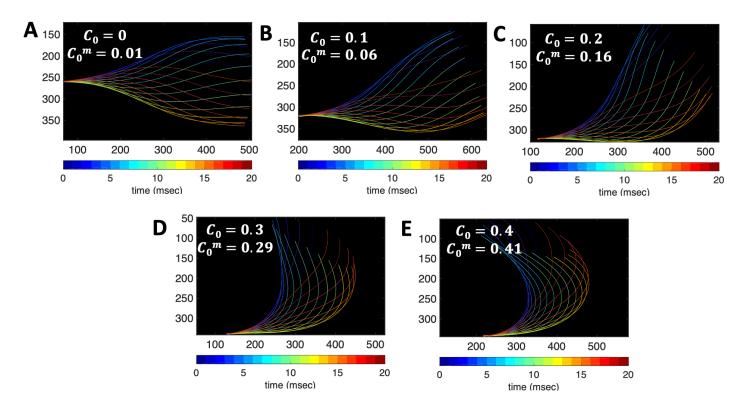


Fig. S1 To measure the systematic error of our tracking GVF algorithm, we generated artificial data with known values of dimensionless mean curvature $C_0 = \kappa_0 L/(2\pi)$, and tracked the filaments using GVF. The measured values of mean curvatures of tracked filaments is given by C_0^m . As it is shown in the panels A-E, the measured values deviate from the real values at small C_0 , but approaches the real values at higher C_0 . In other words, our algorithm has a smaller systematic error (less than 4%) for curved filaments with $C_0 > 0.3$.

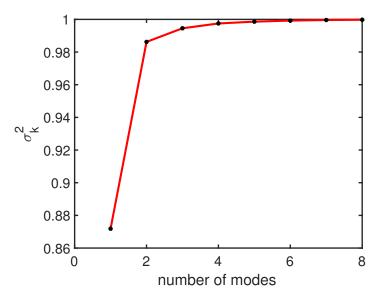


Fig. S2 Fraction of the total variance σ_k^2 , as defined in Sec. 2.3, plotted versus the number of PCA modes *n* for the axoneme shown in Fig. 3A.

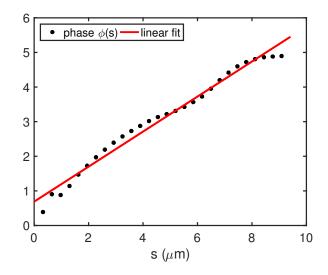


Fig. S3 The phase $\phi(s)$ of traveling curvature waves of the axoneme presented in Fig. 3A, obtained by performing Fourier transform in time at each position s along the axonemal length. The wavelength is then calculated as $\lambda = 2\pi L/(\phi(L) - \phi(0)) = 13.19 \ \mu$ m. The red line represents a linear fit, which we extrapolate to obtain $\phi(0)$.

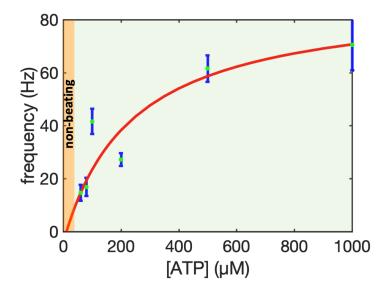


Fig. S4 The frequency of reactivated axonemes depends on the [ATP] and follows a Michaelis-Menten type kinetics with a linear trend at small [ATP] and saturation at higher [ATP]. A minimum critical concentration of $[ATP]_{critical} = 60 \ \mu\text{M}$ is needed to reactivate the axonemes. In all the experiments $[Ca^{2+}] = 0 \ \text{mM}$.

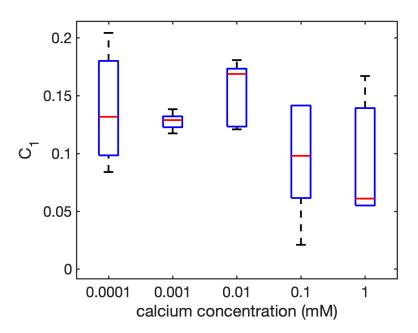


Fig. S5 The amplitude of traveling wave component C_1 is less sensitive to the calcium concentration and shows a reduction at high $[Ca^{2+}]$ around 1 mM.