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S1. CHARACTERIZATION OF THE EXPERIMENTAL ROD SUSPENSION

This section describes the characterization of the rod suspensions studied in our experiments. We used silica rods
with mean length ⟨L⟩ = 9.8 µm and width ⟨σ⟩ = 1.5 µm, respectively. The rods were highly polydisperse along the
long axis with a coefficient of variation of 42%. The coefficient of variation along the short axis was 2.5%. A monolayer
of the rods was confined to a thin sample cell, where they exhibit a quasi two-dimensional (quasi-2D) translational
and orientational motion within the sample plane. We varied the density of rods in the suspension to control the area

fraction φ =
∑N

i=1 Li σi/A; N and A being the total number of rods in focus and the total area of the field of view,
respectively. Typical snapshots of rods at different area fractions φ are shown in Fig. S1. At higher area fractions
(φ ≳ 0.80), the rods form rafts, where several rods align parallel to each other, see Fig. S1(c) and (d).

(a) (b) (c) (d)

FIG. S1. Snapshots from video microscopy of the quasi-two-dimensional system of rods with mean length and width 9.8 µm
and 1.5 µm, respectively, with corresponding coefficients of variation (CV%) of 40% and 2.5%. The frames show various area
fractions φ: (a) φ = 0.40, (b) φ = 0.55, (c) φ = 0.85, and (d) φ = 0.94. The scale bar corresponds to 10 µm.

Figure S2(a) shows the self-intermediate scattering function (SISF) of the rods

Fs(qm, t) =
1

N

〈
N∑
j=1

eι̇qm·[rj(t)−rj(0)]

〉
, (S1)

which characterizes the translational dynamics. Here, qm is the scattering vector and rj(t) is the particle position at
time t. The sample is isotropic and hence we can consider the SISF as a function of the vector length qm = |qm|. We
used a value of qm = 1.12 µm−1 to graph the SISFs, which is where we locate the first peak in the structure factor.
The translational relaxation time τT is defined as the time after which Fs(qm, t) is reduced by a factor 1/e, and this

time is plotted in Fig. S2(c). The area fraction at which the glass transition takes place φg, is obtained by fitting the
data with the following function [1]:

τT = (φT
g − φ)−γT , (S2)

that captures the divergence near the transition point. From the fit, we obtained φT
g = 0.92 ± 0.01 and γT =

2.56 ± 0.07. The corresponding fitted trend is given by the solid line Fig. S2 (c).
Similarly, orientational relaxation is characterized by the orientational correlation function

Ln(t) =
1

N

〈
N∑
j=1

cosn[θj(t)− θj(0)]

〉
(S3)

where n is an integer and θj(t) is the angle of the rod with respect to the x-axis. We show the orientational correlation
function Ln(t) for n = 4 — the transition is independent of the n choice, see Ref. [2], which also provides a justification
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of the use of n = 4 — in Fig. S2(b) and the dependence of the corresponding relaxation time (also defined in terms
of the decay by 1/e) on φ in Fig. S2(d). The orientational relaxation time τθ fits well to the function

τθ = (φθ
g − φ)−γθ , (S4)

near the orientational glass transition, see Fig. S2(d). From the divergence in the data, we locate the transition at an
area fraction φθ

g = 0.88 ± 0.01 and γθ = 2.40 ± 0.02.
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FIG. S2. (a) The self-part of intermediate scattering function Fs(qm, t) as a function of time t at wave number qm = 1.12 µm−1

for different area fractions φ of the rods suspension. (b) The orientational correlation function L4(t) as a function of time for
the same φ as in (a). (c) The translational relaxation time τT as a function of φ; τT is defined from Fs(qm, t) as the 1/e decay
time. The solid line corresponds to the fit τT = (φT

g − φ)−γT . (d) The orientational relaxation time τθ as a function of φ,

similarly defined from L4(t). The solid line corresponds to the fitting function τθ = (φθ
g − φ)−γθ .
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S2. THE BEHAVIOR OF THE JANUS PARTICLES IN EXPERIMENT

Figure S3 shows the mean squared displacements characterizing the behavior of an inactive probe in our rod
suspension. That is, a carbon-coated Janus sphere with diameter 13.7 µm (in the caption, a is the radius), which is
not illuminated. We note that the translational mean squared displacement (MSD) shows caging features, due to the
glassy nature of its surroundings, as also commented on in the main text. The mean squared angular displacement
(MSAD) of the probe is, however, essentially independent of the rod area fraction φ.
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FIG. S3. Mean squared displacements of an inactive spherical particle (mean diameter 2a = 13.7 µm) embedded in our rod
suspension for various area fractions φ. (a) Translational mean squared displacement (MSD) ⟨∆r(t)2⟩ as a function of time t.
(b) The corresponding mean squared angular displacement (MSAD) ⟨∆θ(t)2⟩. In both panels, the solid, black lines serve as
guides to the eye and show the diffusive ∝ t trend.

Figure S4 shows instead the behavior of the active particle, i.e., when it is subjected to laser illumination with
λ = 532 nm to make it self-propel. As in the main text, the self-propulsion speeds v0 are those for a probe that moves
in a suspension without rods (φ = 0); the effective speed at φ > 0 is lower and left unspecified.
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FIG. S4. (a) MSD of a spherical active particle (AP; identical mean diameter 2a = 13.7 µm and moving with velocity
v0 = 0.7 µms−1) embedded in our rod suspension at various area fractions φ. The black (solid and dashed) lines serve as
guides to the eye and show the diffusive ∝ t and ballistic ∝ t2 trends, respectively, that are typically found in active suspensions.
Note that we are considering the short time trends here, there is another diffusive regime at much longer time.
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S3. SIMULATION MODEL

v0
v0

L

σAP

ri
rj

r’ij
rꞱAP

(a) (b) (c) (d)

σ

FIG. S5. Schematic of particles and their interactions in simulations. (a) Stadium (quasi-2D confined spherocylinder) with
width σ and length L. (b) Spherical active probe (AP), represented here as a disk in our quasi-2D simulation with diameter
σAP and self-propulsion velocity v0. (c) The arm r′

ij , due to interactions between particle i and j, used in the torque expression.

(d) The arm of the torque on the AP r⊥
AP, due to the interaction with a rod.

In our simulations, we modeled the experimental systems as follows. The rods were represented as quasi-2D
spherocylinders, see the schematic in Fig. S5(a); since our simulations are technically fully 2D, the correct term for
our particle shape is stadiums and we will refer to them as such henceforth. This shows that a stadium consist of
a rectangle and two disk-shaped caps. The width of the stadium is given by σ, which is also the diameter of the
disk-shaped caps. The AP was modelled as a quasi-2D disk in simulations, as shown in Fig. S5(b).

A. Equations of Motion for the Stadiums

The motion of and the interactions between all particles are two dimensional (2D). The i-th stadium is described
by the position of its center of mass ri and orientation θi with respect to the x-axis. We split a stadium’s velocity
vi,st in a component parallel and perpendicular to its orientation according to

vi,st = v⊥
i,st + v

∥
i,st, (S5)

where the superscripts ⊥ and ∥ denote the component of the perpendicular and parallel components. The associated
orientational dynamics is described trough the angular velocity ωi,st. Together, this leads to the three equations of
motion that describe the entire stadium dynamics:

v⊥
i,st =

D⊥

kBT

∑
j

F⊥
ij +

√
2D⊥ξ⊥i (t) ; (S6)

v
∥
i,st =

D∥

kBT

∑
j

F
∥
ij +

√
2D∥ξ

∥
i (t) ; (S7)

ωi,st =
∑
j

τij +
√

2Dθ
stξ

θ
i × êi,st(t), (S8)

where ê⊥i,st is the unit vector perpendicular to the stadium’s orientational unit vector êi,st = (cos θi, sin θi). Particle i
interacts with neighbouring particle j via the interaction force Fij and torque τij . In the above equations, T denotes
the temperature of the system and kB the Boltzmann constant. The random forces ξ∗i account for fluid-medium-
induced Brownian fluctuations and have a white-noise spectrum: ⟨ξ∗i ⟩ = 0, and ⟨ξ∗i (t) ⊗ ξ∗j (t

′)⟩ = Iδijδ(t − t′), with
∗ = θ or the translational two vector, which can be decomposed to obtain the parallel and orthogonal components;
⊗ denotes the dyadic product; I represents the 2D identity matrix; δij is the Kronecker delta function; and δ(t− t′)
denotes the Dirac delta function. The diffusion coefficient of a stadium differs along its long and short axis and these
are given by

D∥ =
kBT

2πηLi

(
log

Li

σ
+ νi,∥

)
(S9)
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and

D⊥ =
kBT

2πηLi

(
log

Li

σ
+ νi,⊥

)
, (S10)

respectively, where η denotes the viscosity of the fluid. For the constants νi,⊥ and νi,∥ we used νi,⊥ = 0.839 +

0.185σ/Li + 0.233(σ/Li)
2 and νi,∥ = −0.207 + 0.980σ/Li − 0.133(σ/Li)

2, as numerically determined by Ref. [3]. The
rotational diffusion of the rod is given by

Dθ
st =

3kbT

πηL3
i

(log(Li/σ) + δi,⊥) , (S11)

where δi,⊥ = −0.662 + 0.917σ/Li − 0.050(σ/Li)
2 is a constant determined numerically by Ref. [3].

B. Forces and Torques acting on the Particles

To obtain the forces and torques, we assume the rods and probe are nearly hard objects, which interact via the
short-ranged, repulsive Weeks, Chandler and Anderson (WCA) potential

UWCA (dij) =

4ϵ

[(
σij

dij

)12

−
(

σij

dij

)6
]
+ ϵ if dij ≤ 21/6σij

0 if dij > 21/6σij

, (S12)

where σij = (σi + σj)/2 is the averaged particle width of the two particles (labelled i and j) involved. Note, we chose
to write this down using variable widths, such that the equation may be generalized to stadium-disk interactions.
The separation distance between the two particles is given by dij and has associated length dij . For stadiums dij is
a function of both their centers of mass and their orientation. We used the method described in Ref. [4] to calculate
this distance. We chose the interaction strength ϵ = 10 kBT , which enabled a reasonable time step for resolving the
dynamics in our simulations.

The anisotropic shape of the stadiums allows them to experience a torque when they interact with neighboring
particles j. The torque generated on stadium i due to the force Fij exerted by a neighboring stadium or disk-like
probe is

τij = r′ij × Fij , (S13)

where r′ij is the lever-arm vector of rod i as shown in Fig. S5(c), which connects the center of mass of rod i to the
point where Fij acts.

C. Equations of Motion for the (Active) Disk

Turning to the dynamics of our (in)active probe particles — there is at most a single one in a simulation — we
modeled these using the overdamped Langevin equations for the probe’s translational and angular velocity:

vAP =
DT

kBT

∑
j

FAPj + v0êAP(t) +
√

2DTξAP(t); (S14)

ωAP =
∑
j

τAPj +
√
2Dθξ

θ
AP × êAP(t). (S15)

Here, DT = kBT/(3πησAP) and Dθ = kBT/(πησ
3
AP) are the free translational and rotational diffusion coefficient

coefficients of the probe, respectively. Again, we used 3D expressions for these quantities (those of a sphere), for
the aforementioned reasons. The two random forces ξAP and ξθAP have the same Gaussian property as that of the
stadiums. The forces FAPj between an AP and surrounding rods (indexed j) are computed using Eq. (S12). Activity
comes into the equations in two places. (i) Directly into the translation via the second term on the right-hand side
of Eq. (S14). This term captures persistent motion in the direction the probe is pointing; indicated here using the
unit vector êAP. (ii) Indirectly via the active torque τAPj , which we will discuss next in section S3D. The propulsion
speed of the disk was set to v0 = 100σAPDθ, with Dθ as above. This proved sufficiently low a self-propulsion to
prevent significant distortion of the passive stadium surrounding.
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D. Generation of the Active Torque

In a passive, frictionless system, there is no torque acting on the disk-like probe. We simulated the activity-induced
reorientation via an active torque τAPj generated by contacts between the probe and neighboring rods. Here, we used
an expression that mimics rolling friction (see Ref. [5]) as introduced for active probes in Abaurrea-Velasco et al. [6]:

τAPj =
βc,jDθ

kBT

(
r̂APj ×

(
r̂⊥APj · v0

)
r̂⊥APj

)
, (S16)

where r̂i is the unit vector pointing along the direction connecting the center of mass of the AP with the closest point
of the rod, see the schematic in Fig. S5 (d); r̂⊥i is the unit vector perpendicular to this direction. The symbol βc,j

represents the coupling parameter, which we chose to depend on the magnitude of the interaction force FAPj between
the probe and rod j. When the interaction force is larger than a set cut-off force Fc, the coupling constant has a
constant value of 1, below this force threshold the coupling scales linearly with the magnitude of the interaction force:

βc,j =

{
FAPj

Fc
if FAPj < Fc

1 if FAPj ≥ Fc

. (S17)

We used Fc = 20kBT/σ, which in practice implied that the AP only reorients slightly when it interacts with an
isolated rod. Only when the system is crowded, the surrounding rods can push back on the AP sufficiently to create a
significant torque and thus reorientation. We validated our choice for Fc by comparing the MSADs at an area fraction
of φ = 0.24 — sufficiently low to identify single stadium-probe interactions — for three cut-off values Fc = 0, 10,
and 20kBT/σ. We will consider this further in section S6, once we have provided additional details on the systems’s
properties to ground such a discussion.

The force threshold replaced the number-of-neighbors criterion of Ref. [6], which was introduced to account for a
similar effect in the bidisperse colloidal sphere background. Leading up to the completion of that study, a contact-
force based criterion was also considered. However, the comparable sizes between the probe and background made it
difficult to determine an appropriate cut-off value that best fit the trends observed there. In this respect, we should
note that our reorientational torque model is an effective description only. We cannot make claims about the exact
nature of the interaction that leads to reorientation, other than that it is sufficient for it to be short ranged. Clearly,
activity is also a requisite, as evidenced by the experiments, which is captured via the v0 dependence in Eq. (S16).

S4. CHARACTERISTICS OF PASSIVE ROD SUSPENSION

In Fig. S6(a-c) we show snapshots of the system at an area fraction of φ = 0.55, 0.75, and 0.85. We find — similar to
the experimental system — no long-range order at any area fraction. We characterized the passive stadium suspension
(no added probe) using the self-intermediate scattering function Fs (qm, t) and the orientational scattering function
L4 (t), as given in Eq. (S1) and Eq. (S3). We used qm = 0.5σ−1, which is the location of the first peak in the structure
factor. The self-intermediate scattering function is plotted in Fig. S6(d) and the orientational scattering function is
plotted in Fig. S6(f). We fitted the tail of the scattering functions with a stretched exponential

f (t) = exp
[
− (t/τ)

β
]
. (S18)

Where the fits through Fs (qm, t) give the translational relaxation times τT, as plotted in Fig. S6(e). The fits through
L4 (t) give the orientational relaxation times τθ of the passive rod system, as shown in Fig. S6(g). We located the
φ for the orientational and translational glass transitions by fitting the translational relaxation times with Eq. (S2)
for φ > 0.6 and the orientational relaxation time with Eq. (S4) for φ > 0.6. From these fits we obtained values of
φT
g = 0.775, γT = 1.51± 0.10 and φθ

g = 0.767, γθ = 1.66± 0.02, respectively.

We characterised the structure of the passive rod suspension by measuring the average number of rods in a raft
⟨nc⟩. We used a cluster algorithm that identifies clusters in the system. In this algorithm, a rod is added to the
cluster if the angle between the rod and a rod in the cluster is < 10◦ and the rods are in contact in experiments or the
distance between the center of mass of the stadiums is < (⟨L⟩+ σ)/2. From our clusters, we calculate the probability
distribution function Pn(n, φ) to find a raft of size n in the system at an area fraction of φ. The average n is then
calculated according to

⟨nc(φ)⟩ =
n=Nc∑
n=1

nPn(n, φ), (S19)

where Nc is the maximum cluster size found in the system.
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FIG. S6. Overview of the properties of a passive stadium suspension in simulations. (a)-(c) Snapshots of the system taken at
area fractions of φ = 0.55, 0.75, and 0.85. The stadiums are colored according to their orientation, which is projected on the
interval of [0, π], see the color bar on the right. (d) Self-intermediate scattering function Fs(qm, t) for range of φ — see legend
shared between (d,f) — as a function of time t at fixed qm = 0.5σ−1, as justified in the text. (e) Relaxation time τT found
from fitting Fs(qm, t) with a stretched exponential, see text. The blue shaded area indicates area fractions beyond the the
translational glass transition from the fit (dashed line) through the simulated τT . (f) Orientational correlation function L4(t)
as a function of t for range of φ, see legend in (d,f). (g) The associated relaxation times τθ were obtained by fitting a stretched
exponential to the curves in (f), see text. The blue region indicates φ values beyond the orientational glass transition, as found
from the fit (dashed line) through the simulated τθ.

S5. CHARACTERISTICS OF THE PROBE DYNAMICS

In Fig. S7(a), we show snapshots of the AP in a system with area fraction of φ = 0.75 with time interval 0.6 ·
10−2 D−1

θ . From these snapshots, it becomes clear that the AP does not move around on this time scale, but it does
change its orientation. In Fig. S7(b), we show snapshots of the AP in the same system but for a larger time interval of
0.6D−1

θ , where one can see that the neighborhood of the AP changes completely between snapshots. The orientation
also changes considerably, as the regime of (enhanced) rotational diffusion has set in.

Figure S7(c) shows the MSD ⟨∆r2(t)⟩ of an AP for a selection of φ. We fitted ⟨∆r2(t)⟩ with 2DAP
T t at long times,

from which we obtained DAP
T , the translational diffusion coefficient of the AP. This value is shown as function of
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FIG. S7. Overview of dynamics of the disk-like probes used in simulations. (a,b) Snapshots in center of mass frame of the
AP, where the orientation of the AP is indicated by the white arrow. The time interval is (a) ∆t = 0.6 · 10−2 D−2

θ and (b)
∆t = 0.6D−1

θ . The stadiums are colored according to their orientation, which is projected on the interval of [0, π], see the color
bar on the right. (c) The MSD ⟨∆r2AP(t)⟩ for an AP as a function of time t for a selection of area fractions φ, as indicated by
the legend. (d) The associated long-time translational diffusion coefficients DAP

T , obtained from a linear fit to the graphs in
(c) as described in the text, normalised by DT (the free translational diffusion coefficient of an inactive disk). (e) The MSAD
normalised by 2Dθt, presented as a function of t, for 4 different area fractions, see the legend in (c). The grey dotted line
corresponds to ts, the contact-dynamics time as defined in the main text, and the black dashed line corresponds to τ∥ (obtained
for φ = 0.75).

area fraction in Fig. S7(d). DAP
T decreases with increasing φ, as expected for a background that exhibits arrested

dynamics. Around φ = 0.75, where the AP shows a peak in the rotational diffusion, see Fig. 3(a) of the main text, the
translational diffusion coefficient decreases over orders of magnitude. This makes sense, as increased rotation reduces
the probe’s ability to move persistently. It should be noted that the nearly concurrent translational glass transition
of the stadium background will also strongly reduce the probe’s ability to translate. Because the two transitions lie
close together in our simulation, we cannot distinguish which of these effects dominates.

To better highlight the features of the MSADs, we present in Fig. S7(e), the MSAD divided by 2Dθt. In this
representation, linear diffusion is a horizontal line, where a value of 1 represents free rotational diffusion. It can be
seen that for all area fractions the probe starts from free linear diffusion at very short times. This is expected to hold
in general for APs at sufficiently small times [7].

At intermediate times, there is an increase in the value, which depends on the area fraction. Examining φ = 0.75
(dark blue), which lies just before the orientational glass transition, we observe two plateau-like features. We associate
the first plateau with the averaging out of probe reorientations generated by individual stadium-probe contacts. We
therefore expect the time scale associated with the transition to this plateau to be that of the average contact dynamics.
We locate the transition at ts ≈ 10−3 D−1

θ (grey dotted line) and verified that this indeed roughly corresponds to the
time over which stadiums come into contact with the probe; not shown here. For φ away from the glass transition, we
find that on even longer time scales, the value ⟨∆θ2(t)⟩/(2Dθt) typically decreases (mildly below and strongly above
the transition, respectively). In both cases, this can be attributed to the setting in of (sub)diffusive dynamics of the
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AP’s orientation. For relatively low area fractions (yellow curve), the effect of collision-based enhancement dies out,
since there is a long time between reorienting collisions. This implies that the effective enhanced rotational diffusion
(ERD) is relatively limited. For intermediate values of φ (cyan curve), there is little decay and collisions directly
drive ERD. Turning to φ above the glass transitions (purple curve), the probe is strongly caged translationally. This
implies that the AP orientational dynamics becomes equivalently caged in terms of the reorienting landscape to which
the AP is subjected by contact interactions with the stadiums. This mechanism of strong ERD reduction is discussed
further in Ref. [6], see also Fig. 4 of that reference.

Intriguingly, for φ = 0.75, there is a secondary increase in ⟨∆θ2(t)⟩/(2Dθt) that plateaus at long times, where we
find true ERD. We indicate the (φ = 0.75) time scale for the long-axis stadium displacement τ∥ — see the inset to
Fig. 4(b) in the main text — as a black dashed line in Fig. S7(f). This measure corresponds well in a qualitative
sense to the time where the transition to the secondary plateau is made. That is, where the orientational dynamics
of the probe changes from short-time super diffusive to long-time diffusive. This is a piece of evidence in support
of our conclusion that the longitudinal stadium fluctuations in their raft-like structures are key to the emergence of
significant ERD.

S6. JUSTIFICATION OF THE CUT-OFF CRITERIA

In our simulations and analysis of the results, we have used two cut-off values for the force between a stadium and
a disk-like probe: (i) Fc for the per-contact torque generated on the AP. This quantity was used for all simulations
of the AP. (ii) The normal force between a stadium and the probe FN , for which we consider these to be in contact.
This quantity was used to generate the data in Fig. 5(a),(b) of the main text. In this section, we will discuss the
effects of these cut-offs and justify the values of Fc and FN used in our simulation.

(c)(b)(a)

FIG. S8. Effect of the cut-offs used in our calculations. (a) The AP’s MSAD ⟨∆θ2(t)⟩ for three different values of the cut-off Fc

at an area fraction of φ = 0.25. The cut-off values are indicated in the legend and the gray dotted line represents the MSAD of
freely diffusing probe. (b) Average number of contacts ⟨Nc⟩ between the AP and surrounding stadiums as function of φ. The
value is normalized by maximum number of contacts Nmax for 3 different values of FN . (c) Variance of the number of contacts
sN as a function of φ for 3 different values of FN .

As explained in section S3D, the Fc cut-off is used to suppress torque generation on the AP that results from
interaction with an isolated stadium. To determine an appropriate value for Fc, we performed simulations at a low
area fraction of φ = 0.25, for which we measured the MSAD of the probe. We used a values of Fc = 0, 10, and
20 kBT/σ and compared the result to the MSAD of a freely diffusing probe, see Fig. S8(a). We found that for
Fc = 20 kbT/σ the passive free rotational diffusion is obtained at large times, which mimics the behavior of the AP
in experiments. For lower values of Fc we find enhanced rotational diffusion, even at the low value of φ = 0.25. This
justifies our choice of Fc = 20 kBT/σ.
Next, we consider FN , where it is understood that a contact is present whenever the interaction force ≥ FN . A

stadium and the probe start to interact when their separation r < rWCA = 21/6σ. However, what constitutes a
contact is open to consideration, as the interaction is almost hard-disk, but not quite. In addition, the generation of
torque on the probe is gradually increased as r becomes smaller, up to the limiting value imposed by Fc. In Fig. 3(b)
in the main text, we computed the variance of the number of contacts sN using a contact criterion of FN = 5 kBT/σ.

Figure S8(b) show what the effect of FN is on the average number of contacts ⟨Nc⟩/Nmax as function φ. Here,
Nmax = C/σ is the maximum number of contacts, with C the contour of the probe. As expected, a greater value of
FN leads to a decrease in the number of contact at all densities. However, the effect on the shape of the curve is very
minor; with increasing FN the curve becomes slightly steeper. Figure S8(c) shows the effect of FN on the variance of
the number of contacts sN as function of φ. Similar to our result for ⟨Nc⟩, the overall shape is the same, however,
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the exact location of the peak shifts to higher area fractions with increasing FN . This effect suggest that the exact
location of the peak of DAP

θ depends the strength of the contact and how often the contact occurs.
Combining both results, we chose the value FN = 5 kBT/σ to be most representative of the trend observed in

experiment. This comes with the caveat that there are significant differences in the properties of the underlying
surrounding suspension between the simulations and experiment. Thus, our matching is only qualitative.
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