Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information for

Producing Shape-Engineered Alginate Particles Using Viscoplastic Fluids

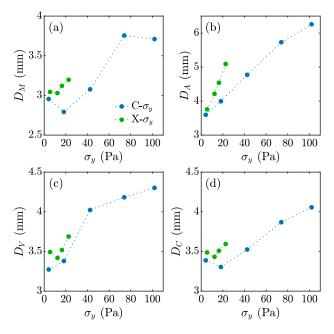
Sima Asadi, Arif Z. Nelson, b^{\ddagger} and Patrick S. Doyle*abc

This pdf file includes Figure S1, Figure S2, Figure S3, and the captions for Movies S1 to S4. Movies S1 to S4 have been provided separately as mp4 files.

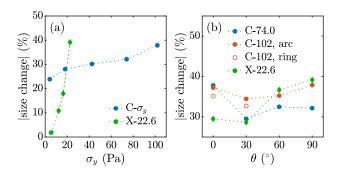
^a Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. E-mail: pdoyle@mit.edu

^b Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore.

^c Harvard Medical School Initiative for RNA Medicine, Boston, MA 02215, USA.


[‡] Present address: Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore.

Droplet diameter calculation:


We used 4 different methods to calculate the diameter of viscoplastic droplets dripped from a 14G vertical nozzle:

- 1. Dripping time of n = 10 droplets, t, was used to calculate $D_M = (6Q_0t/(n\pi))^{1/3}$, where Q_0 is the fluid flow rate set by a syringe pump.
- 2. Projected area of the droplet obtained from its 2D image, A, was used to calculate $D_A = (4A/\pi)^{1/2}$.
- 3. Volume of the droplet was used to calculate $D_V = (6V/\pi)^{1/3}$. Assuming rotational symmetry, we calculated $V = \int_0^L \pi x^2 dy$, where L and x = f(y) are the droplet length and radius, respectively. f(y) was obtained by fitting a 6th degree polynomial curve to the semi-perimeter of the droplet in its 2D image.
- 4. Similar to method 3, volume of the droplet was used to calculate $D_C = (6V_C/\pi)^{1/3}$. We used the length of droplet centerline in the 2D image, L_C , and its distance from the droplet edge, $x_C = f(y)$, and calculated $V_C = \int_0^{L_C} \pi x_C^2 dy$.

The results of all methods have been shown in Fig. S1.

Figure S1: Diameter of C- σ_y and X- σ_y droplets dripped from a 14G vertical nozzle. (a) D_M , (b) D_A , (c) D_V , and (d) D_C have been defined above. Each data point in (b), (c), and (d) is the average of 3 trials and the error bars (not shown) are smaller than the marker size. Dotted lines are used as a guide for the eyes.

Figure S2: Effect of (a) σ_y and (b) θ on the degree of shrinkage and swelling of C- σ_y and X- σ_y particles compared to the droplets. Circle markers show negative values (shrinkage) and the diamond markers show positive values (swelling). Each data point is the average of 3 trials and the error bars (not shown) are smaller than the marker size. Dotted lines are used as a guide for the eyes.

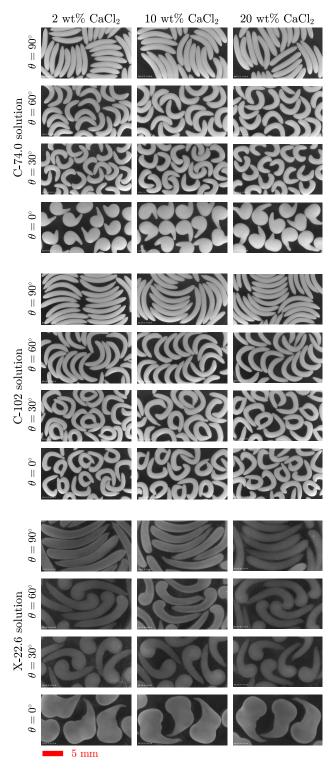


Figure S3: Effect of CaCl₂ concentration on the shape of alginate particles. Cumulative images of all particles produced using C-74.0, C-102, and X-22.6 solutions dripped from a 14G nozzle positioned at $\theta = 90^{\circ}$, $\theta = 60^{\circ}$, $\theta = 30^{\circ}$, or $\theta = 0^{\circ}$ into a 2, 10, or 20 wt% CaCl₂ bath. The red scale bar is 5 mm for all images.

Movie S1: C- σ_y solutions are dripped from a vertical 14G nozzle into a 2 wt% CaCl₂ bath. The red scale bar is 5 mm for all videos.

Movie S2: C-74.0 and C-102 solutions are dripped from a 14G nozzle angled at $\theta = 60^{\circ}$, $\theta = 30^{\circ}$, or $\theta = 0^{\circ}$ into a 2 wt% CaCl₂ bath. The red scale bar is 5 mm for all videos.

Movie S3: X- σ_y solutions are dripped from a vertical 14G nozzle into a 2 wt% CaCl₂ bath. The red scale bar is 5 mm for all videos.

Movie S4. X-22.6 solution is dripped from a 14G nozzle angled at $\theta = 60^{\circ}$, $\theta = 30^{\circ}$, or $\theta = 0^{\circ}$ into a 2 wt% CaCl₂ bath. The red scale bar is 5 mm for all videos.