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I. CONTACT HISTOGRAMS

In the main text we show that the mean contact number 〈Z〉 changes considerably with

varying aspect ratio ε of spherical ellipses in dense packings. In Fig. S2 we plot the distribu-

tions of contacts (averaged over all generated packings) for systems of N = 30 and N = 300

particles at different aspect ratios to shed light on the effect of curvature on them. The

tolerance value in the overlap function to detect a contact is again set at δλ = 10−4. For

both system sizes at ε = 1, circles with four contacts are the most common and there are no

particles with 6 or more contacts, as the exact hexagonal packing cannot be achieved on a

sphere. As we increase ε towards the peak of 〈Z〉 at ε ≈ 2, the center of contact distribution

moves towards ε = 6. Already at this point, some differences emerge between the N = 30

and N = 300 cases. The lower mean contact number 〈Z〉 for N = 30 observed in Fig. 2b can

be traced back to the higher number of five-contact ellipses as opposed to the N = 300 case

where six-contact ellipses dominate. With an increase in ε, contact distributions in both

systems sizes widen significantly and the percentage of ellipses with fewer than six contacts

increases. This is related to the formation of domains of parallel ellipse where neighboring

parallel ellipses can be stabilized by four contacts in the case of large systems or even by only

three contacts for small N where curvature is significant. Ellipses with high contact numbers

can be found at the boundaries of these domains, lying approximately perpendicular to the

parallel ellipses in the domain.

N=30 N=300

FIG. S1. Histograms of the number of contacts per ellipse for systems of N = 30 and N = 300

particles at different aspect ratios. Dotted vertical lines show the mean number of contacts 〈Z〉.
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II. PACKING FRACTION CLOSE TO ε = 1

Our packing results for circle packing (ε = 1) are closely related to the Tammes problem

of finding the densest packing configuration. Due to the strong frustration in the packing

of circles on a surface with nonzero Gaussian curvature, the packing density of the optimal

solution can change significantly with the number of particles, especially at lower N [1].

In our simulation, the Tammes solutions represent the upper density limit for RCP results.

Nonetheless, this still influences the average packing density among generated configurations

at different system sizes. One can see in Fig. S2 that better packing densities can be

achieved for N = 20, 24, 30, 32, 36, 38, 44 and 48. Many of these values can be related

to configurations with possible high-density structures with high symmetry, e.g., octahedral

for N = 24 and 48—however, symmetry in itself is not a prerequisite for best packing

[1]. The fluctuations in packing density decrease with an increase in N as adding additional

particles into the system becomes less significant. When ε is increased from 1 (perturbations

of spherical shape towards ellipsoids), the packing densities start to increase for all N , as

discussed in the main text, but the peaks in N persist until ε ≈ 1.2 − 1.3. In this region,

FIG. S2. Heatmap of the average packing density 〈φ〉 in dependence to system size N and ellipse

aspect ratio ε, with a focus on the range of ε close to 1. The average is taken over 30 generated

configurations at each point (N, ε).

the packing density becomes mostly independent of N , demonstrating that more degrees of

freedom lead to less frustrated packings compared to circles. Note again that for each pair

(N, ε), we start from random initial conditions, so the solutions for ε > 1 are not simply

propagated from ε = 1 results.
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III. ENVELOPE OF PEAK WIDENING IN THE STRUCTURE FACTOR

As discussed in the main text, the widening of the peaks in the positional order (scalar)

structure factor S` is related to the increase of possible distances between the centers of

neighboring ellipses as the ellipse aspect ratio increases. The two edge cases are dn.n. = 2β

(side by side ellipses) and dn.n. = 2α (linearly arranged ellipses touching at apexes), with

other touching configurations assuming intermediate values. Positions of the peaks in the

structure factor can be linked to the minimal distance between neighboring particles,

`k(dn.n.) =
2kπ

dn.n.
(S1)

where k = 1, 2, 3, . . . is the index of the peak [2]. Therefore, an increased range of possible

distances amplifies an increasing number of S`, resulting in the widening of structure factor

peaks and a decrease of their magnitudes. We would like to calculate an expression for the

envelope of amplified `k in dependence to the system size and aspect ratio, with left and

right branches `(l)crit(N, ε) = `k(2α) and `
(r)
crit(N, ε) = `k(2β) = `k(2α/ε), respectively. This

calls for an expression for α(N, ε) in a dense packing that can be obtained from the packing

fraction φ(N, ε) = NA/4π if we approximate the ellipse area by A(α, ε) = παβ = πα2/ε.

While this expression is not derived from the exact formula [Eq. (1)], Fig. S3 shows that it
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FIG. S3. Relative error of approximating the ellipse area as A = πα2/ε instead of the expression

in Eq. (1) in the main text, as a function of the ellipse size α and shown for different ellipse aspect

ratios ε. Black markers and horizontal lines show the error for N = 100 ellipses with ε = 1 (left

marker) and ε = 10 (right marker).
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works well for large N where the ellipse sizes are small (the error is on the order of a few

percent). We get α =
√

4εφ(ε)/N and thus

`
(l)
crit(N, ε) = kπ

√
N

4εφ(ε)
, `

(r)
crit(N, ε) = kπ

√
Nε

4φ(ε)
, (S2)

for the left and the right branch of the k-th envelope. As the dependence of packing fraction

on N is weak, we neglect it in expressions (S2), resulting in `crit ∝
√
N .

IV. TENSOR HAMONIC EXPANSION

Let T = T ijei ⊗ ej be a traceless symmetric tensor field on the surface of a unit sphere,

i.e., we have T ij = T ji and T ii = −T jj, and the vectors ei ∈ {eϑ, eϕ} form an orthonormal

basis on the sphere. Basis tensors for the harmonic expansion of this field can be obtained

by acting on spherical harmonics Y`m with operators ∇s∇s, LsLs, and ∇sLs, where ∇s =

ϑ̂∂ϑ + ϕ̂ 1
sinϑ

∂ϕ and Ls = r×∇ = ϕ̂∂ϑ− ϑ̂ 1
sinϑ

∂ϕ [3, 4]. After some algebraic manipulation,

we get two orthonormal basis tensors,

t+`m = −ı [2`(`+ 1)(`− 1)(`+ 2)]−1/2

−X`m W`m

W`m X`m

 , (S3)

t×`m = [2`(`+ 1)(`− 1)(`+ 2)]−1/2

W`m X`m

X`m −W`m

 , (S4)

with X`m = 2
sinϑ

∂ϕ (∂ϑ − cotϑ)Y`m andW`m =
[
∂ϑϑ − 1

sin2 ϑ
∂ϕϕ − cosϑ

sinϑ
∂ϑ
]
Y`m. Note that the

derivatives of Y`m can be expressed in terms of other spherical harmonics with the same `.

Tensor field T can then be expanded in terms of t+`m and t×`m as

T =
∑
`,m

(
A`mt

+
`m +B`mt

×
`m

)
, (S5)

with the expansion coefficients given by

A`m = (T, t+`m) =

∫
dΩT ∗ : t+`m, (S6)

and equivalently for B`m. (Here, the dot product of two tensors is defined as T : S = T ijSij.)

From these coefficients, we define the tensor structure factor for t+ and t× components

analogously to the scalar structure factor,

S+
` =

4π

N

1

2`+ 1

∑̀
m=−`

|A`m|2, S×
` =

4π

N

1

2`+ 1

∑̀
m=−`

|B`m|2. (S7)
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We describe the configurations of ellipses on the sphere with a tensor field Q(Ω) =∑N
k=1[p̂k ⊗ p̂k − I/2]δ(Ω − Ωk), where the ellipse orientations p̂k are given in the basis

{eϑ, eϕ} and Ωk are the ellipse positions in terms of polar and azimuthal angles. Panels (a)

and (b) of Fig. S4 show the tensor structure factors S+
` and S×

` , respectively, for packings

with N = 100 particles. As in the case of the scalar harmonic expansion of positional order,

presented in Sec. 4.1 in the main text, the results are averaged over all generated packings

to smooth out variations and amplify common properties. For the packing of circles (ε = 1),

we are effectively calculating the expansion of a random tensor field which gives a constant

value of S+
` = S×

` = 1/4. As soon as ε > 1, some orientational order emerges in the packing

that is expressed differently in the S+
` and S×

` structure factors. (Note that the S+
` heatmap

has a cutoff at 0.5 to improve contrast.)

At low ε, the behavior of the two structure factors differs mostly at low `, where S+
`

has a minimum (but does not vanish) while S×
` has a peak. Around the first peak of the

scalar structure factor (Fig. 5 in the main text), both tensor expansions also have a local

maximum, and each subsequent spectral peak is lower in intensity. Around ε ≈ 1.5, the

low ` behavior of S+
` completely changes—for higher aspect ratios, we get a maximum at

` = 2, and after the first peak, the structure factor quickly reaches the asymptotic value

of 1/4. Conversely, the S×
` structure factor (Fig. S4) shows a much richer behavior, with

multiple spectral peaks emerging when the ellipse aspect ratio is increased. The positions of

these peaks in the (`, ε) plane can be related to the intersections of envelope branches with

different peak indices k [Eq. (S1)]. The right branch with index k and the left branch with

index k + 1 intersect at

(εk, `k) =

(
k + 1

k
,

√
k(k + 1)Nπ2

4φ(εk)

)
. (S8)

We determine the peak values `k and εk numerically from heatmaps in the (`, ε) plane and

plot the peak coordinates with respect to system size N in panels (c) and (d) of Fig. S4. Both

coordinates follow the predicted N dependence—εk are constant, though slightly higher than

the values for branch intersections, and `k are fitted well by a
√
N function. Approximating

constant φ(ε), one can also calculate the inverse function εk(`k). As shown in panel (b)

of Fig. S4, the expansion of the inverse function up to the second order in `, εk(`k) =

1 + A/`+B/`2 can be fitted well on the peak positions for the fit parameters A and B.

To understand the meaning behind the peaks in the S×
` structure factor and the reasons
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FIG. S4. (a, b) Heatmaps of the tensor structure factors S+
` and S×

` for configurations with

N = 100 and ε ∈ [1, 3]. White color represents the asymptotic spectral value of 1/4. Additionally,

the heatmap for S+
` has a cutoff at S+

` = 0.5 to increase the contrast in the plot. In panel (b),

we fit the theoretically predicted function εk(`) to the positions of the structure factor peaks.

(c, d) Dependence of peak values `k and εk on system size N . We again fit the theoretical

predictions, `k ∝
√
N and εk = const. (e–g) Interpolations of the ellipse tensor field based on

the tensor expansion for a representative packing configuration with N = 40 and ε = 2, showing

separately the interpolations of the S+
` expansion (panel (e)) from the coefficients A`m and of the

S×
` expansion (panel (f)) from the coefficients B`m, as well as the total expansion (panel (f)), given

by the expression in Eq. (S5). For the interpolations shown in panels (e–g), the expansion was cut

off at the position of the minimum after the first peak in S×
` .

behind why they do not appear in S+
` , we plot the interpolations of the tensor expansion

on the entire sphere, calculated from the coefficients A`m and B`m, both separately for the

+ and × harmonics as well as for the whole expansion (panels (e–g) in Fig. S4). We use

a configuration with N = 40 ellipses so that the structures in the plot are larger, and we
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truncate the expansion at the minimum after the first peak in S×
` , essentially creating a

low-pass filter. The expansion becomes less relevant at high `, as we mostly get the echoes

of features up to the right critical branch `
(r)
crit. We observe that while both expansion

components align with ellipse orientations near their centers, the typical length-scale at

which the orientations in the interpolation change is larger for the × component that forms

vortex-like structures for parallel neighboring ellipses with a vanishing tensor field in the

vortex centers. At ε ≈ 2 where two side-by-side ellipses match a single ellipse in length, it is

possible for these vortex structures to be commensurate with the positional lattice, giving

rise to the resonances observed in S×
` . Between ellipse centers, the + spectral component

is perpendicular to the orientation of the × component, which leads to a vanishing tensor

filed for the full tensor expansion interpolation (panel (g) of Fig. S4). The delta functions

at the ellipse centers become more pronounced if we include a larger number of expansion

coefficients (higher cutoff value for the low-pass filter).

V. GEODESIC SPHERICAL ELLIPSES VS 3D ELLIPSOIDS

We compare the contact function between two geodesic spherical ellipses to the contact

function between two prolate 3D ellipsoids at the same positions and orientations. The main

ellipsoid axis is oriented tangential to the surface of the sphere, parallel to the orientation

of the spherical ellipse, and the three semiaxes are of lengths x1 = sinα and x2 = x3 =

sinα/ε, i.e., the spherical ellipse and the ellipsoid have the same projections to the equatorial

plane (Fig. 1 in the main text). We calculate both the true contact function between

ellipsoids (Perram-Wertheim contact function [5]) as well as the approximation by Berne

and Pechukas [6] for all possible orientations φ0 and φ1 of the ellipse/ellipsoid pair, evaluated

at a given geodesic distance γ. All the contact functions can be interpreted in terms of a

scaling factor needed for ellipses/ellipsoids to reach tangency. This means that even though

the values of 2D and 3D contact functions are not directly comparable as they are mapped

over different spaces, in all cases the value of the contact function λ = 1 signifies that the

particles are exactly touching. This allows us to compare the contours at level 1 in the

plane of all possible mutual orientations of two ellipses at different geodesic distances γ, as

shown in Fig. S5. The distances are chosen depending on the ellipse size α and aspect ratio

ε, covering evenly the whole range from the distance where ellipses overlap for almost all

8
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c) d)

e) f)

FIG. S5. Comparison between the contact function for geodesic spherical ellipses, the exact Perram-

Wertheim contact function for ellipsoids and the Berne-Pechukas approximation, for different par-

ticel sizes α and aspect ratios ε. Colored lines show contours at level 1 (ellipses/ellipsoids touch in

one point) for each contact function, in dependence to the orientations φ0 and φ1 of the first and

second ellipse in the pair at a given geodesic distance γ. When φ0 = φ1 = 0, ellipses are aligned

along the semi-major axes. Shaded area inside the contours shows the region in the orientation

space where ellipses/ellipsoids overlap according to each contact function.
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angles φ0 and φ1 to the distance where they touch only at very specific orientations.

At small ε, all three contact functions show good agreement on the overlap area in the

orientation plane, as demonstrated in panels (a) and (b) of Fig. S5. Unsurprisingly, at large

distances γ, the two ellipsoid contact functions show smaller overlap area (i.e., in general,

measuring somewhat larger distance between ellipsoids than between spherical ellipses) as a

consequence of scaling in 3D instead of on the curved spherical surface. Increasing particle

aspect ratio ε, the differences between the contact functions become more pronounced. At

small particle sizes (panels (c) and (e)), the spherical ellipse contact function still almost

exactly matches the Perram-Wertheim contact function for ellipsoids; however, the Berne-

Pechukas approximation shows large deviations from the two. At intermediate geodesic

distances γ between the particle centers, it leads to much larger area where contact is de-

tected. This can be related to the fact that Berne-Pechukas approximation can overestimate

the correct touching distance [7, 8] and can lead to worse packing density in RCPs. For large

particle sizes and large ε, the difference between geodesic ellipse and Perram-Wertheim el-

lipsoid contact function also increases, as shown in panel (d), where the geodesic ellipse

contact function determines contacts similarly to the Berne-Pechukas approximation. For

very oblong particles that are not small compared to the sphere radius (panel (f)), the dif-

ferences between spherical ellipses and ellipsoids become large. The ellipsoids will mostly

touch outside the spherical surface, which leads to a smaller area in the orientation plane

where overlap is detected, leading to denser packing results. This relationship between over-

lap area and packing density can be considered in general—the contact function with larger

area of detected overlaps will give lower packing densities.
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