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I. COMPUTATIONAL MODEL AND MONTE CARLO SIMULATIONS

A. Monomer model and tubule lattice structure
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Figure 1. Schematic illustration of the tubule geometry and naming convention. The tubule is represented as a triangulated
two-dimensional sheet that is rolled up and closed upon itself. Dashed lines are guides to the eye showing how edges of the
rolled-up sheet match and close. A pair of integer numbers (m,n) uniquely identifies each tubule geometry, where m and n
respectively correspond to the number of bonds along the circumferential and longitudinal directions along the shortest pathway
that travels around the circumference and goes back to the starting vertex. Examples of such pathways are labeled by green
lines in the figure, with the starting point labeled by a yellow circle in each case.

Motivated by recent DNA origami experiments in which triangular monomers assembled into icosahedral capsids
[1] or helical tubules [2], we consider a model in which triangular monomers assemble into tubules. The tubule
structure can be represented as a two-dimensional triangular lattice that is rolled up and closed upon itself in the
three-dimensional space. In Fig. §1, we triangulate a two-dimensional sheet and label the three lattice directions in
three different colors. Depending on how the edges where the structure closes match, different tubule structures are
obtained. We categorize structures using the naming convention employed for carbon nanotubes, in which a pair of
integer numbers (m,n) designates a structure [3]. These integers can be identified by starting from an arbitrary vertex,
and determining the number of bonds along two directions for the shortest pathway (labeled in green in Fig. §1) that
travels around the tubule circumference and returns to the starting vertex. m is the number of bonds with primary
orientation in the circumferential direction (gray bonds in Fig. §1) while |n| is the number primarily longitudinal
bonds (red or blue bonds). In our convention n is positive for a right-handed helix (if the pathway includes red bonds
in Fig. §1) and negative for a left-handed helix (if the pathway includes blue bonds).

B. Calculating preferred dihedral angles for different tubule geometries

To simplify the model, we assume that all triangular monomers are flat, equilateral, and identical. Unlike a flat
triangular lattice, the dihedral angles between a triangular monomer and its neighbors cannot all be 180◦ because the
tubule has a non-zero principal curvature along the circumferential direction. To find the preferred dihedral angles,
we first calculate the position of vertices. In a cylindrical coordinate system with the origin sitting at the longitudinal
axis of the tubule, the radial distances ρ are the same for all the vertices, while the azimuth angles φ and heights
z vary. As an example, Fig. §2 shows a schematic of a (6,-2) tubule geometry. We label the diameter of the tubule
D ≡ 2ρ, the pitch height h of the spiral line formed by gray bonds, the length of edge l0, the azimuth angle difference
∆φi, and height difference ∆zi between neighbouring vertices connected by different bonds. i = 1, 2, 3 corresponds
to blue, red and gray bonds. ∆φi and ∆zi are the same for any lattice point because of translation invariance. h is
positive for the right-handed tubule and negative for left-handed tubule.



3

5          10         15

5          10         15

5          10         15

15

0

-15

15

0

-15

15

0

-15

15

0

-15

15

0

-15

8

4

0

5          10         15

15

0

-15

10

5

0

A (6,-2) tubule

(Δ
φ 3

,Δ
z 3

)

(Δ
φ

1 ,Δ
z

1 )
(Δ
φ

2 ,Δ
z

2 )

5          10         15

15

0

-15

20

10

0

/

/

5          10         15

15

0

-15

20

10

0

Figure 2. Calculating the geometrical constants for given a tubule geometry (m,n) . The schematic shows a (6,-2) tubule
geometry. The diameter D, pitch height h, edge length l0, and the differences in azimuth angle φi and height zi between
neighbouring vertices are labeled. Ideal dihedral angles θ(m,n)

id,1 , θ(m,n)
id,2 , and θ

(m,n)
id,3 correspond respectively to the angles between

two adjacent triangular monomers that share a blue, red, or gray bond. The color maps show h/l0, D/l0, 180◦ − θ
(m,n)
id,1 ,

180◦ − θ
(m,n)
id,2 , θ(m,n)

id,3 − 180◦, and θ
(m,n)
id,1 − θ

(m,n)
id,2 for different tubule geometries (m,n).

∆φi and ∆zi of an arbitrary tubule geometry (m,n) should satisfy the following equations,

m∆φ3 +max (n, 0)∆φ1 −min (n, 0)∆φ2 = 2π

m∆z3 +max (n, 0)∆z1 −min (n, 0)∆z2 = 0

∆φ1 +∆φ2 = ∆φ3

∆z1 +∆z2 = ∆z3

4ρ2 sin2 (
∆φi
2

) + ∆z2i = l20

We obtain the first two equations by following the shortest pathway that travels around the circumference of the
tubule, the third and the forth equation by circulating around the vertices of a triangular monomer, and the final
equation based on the equilateral assumption. With these equations, we solve the positions of the vertices given an
arbitrary tubule geometry (m,n) as well as the dihedral angles between adjacent monomers. We define ideal dihedral
angles θ(m,n)id,1 , θ(m,n)id,2 and θ(m,n)id,3 respectively as the angles between adjacent monomers that share blue, red and gray

bonds in the tubule geometry (m,n). Fig. §2 shows color maps of D/l0, h/l0, 180◦−θ(m,n)id,1 , 180◦−θ(m,n)id,2 , θ(m,n)id,3 −180◦,

and θ(m,n)id,1 − θ
(m,n)
id,2 with respect to the tubule geometry numbers (m,n). As m increases, the diameter of the tubule

geometry D increases while the pitch height h does not change; both θ(m,n)id,3 and |θ(m,n)id,1 −θ(m,n)id,2 | decrease. All dihedral
angles become closer to 180 degrees, since as the diameter of the tubule structure increases, the cylindrical surface
becomes closer to a flat surface. As |n| increases, both D and h increase, θ(m,n)id,3 decreases, and |θ(m,n)id,1 − θ

(m,n)
id,2 |

increases. The contributions of θ(m,n)id,1 and θ(m,n)id,2 to the curvature become more asymmetric.
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II. COMPUTING TUBULE WIDTH FLUCTUATIONS IN THE CONTINUUM LIMIT

We employ a continuum equilibrium model to compute the width distribution of the assembled tubule structures.
Consider a tubule with diameter D and length L. The number of monomers N in the tubule is then given by

N = πDL/a0, (1)

with a0 the area of the monomer. Using the Helfrich model for the bending elastic energy, the free energy per monomer
is given by

gD =
2a0γ

L
−
(
3EB

2
+ Ts

)
+ 2B̃a0

(
1

D
− 1

D0

)2

(2)

in which EB is the binding energy, γ is the line tension, T is the temperature, and s is the per-monomer entropy in
the tubule structure. The coefficient 3/2 in the binding energy term comes from the fact that a triangular monomer
has three edges and each bond is shared by two edges. B̃ is the bending modulus (the continuum limit of the discrete
bending modulus B) given by [4]

B̃ =
√
3B/2. (3)

The equilibrium probability density ρD,L to assemble a tubule structure with diameter D and length L is given by

ρD,L ∼= exp
(
−βN(gD − µ)

)
(4)

where µ is the chemical potential and N is related to L and D by Eq. (1).
Using this distribution, the root-mean-squared diameter fluctuation ∆D is given by,

∆D =

√∫∞
0

(D − ⟨D⟩)2 exp[−βN(gD − µ)]dD∫∞
0

exp[−βN(gD − µ)]dD
(5)

in which the mean of the distribution ⟨D⟩ is given by,

⟨D⟩ =
∫∞
0
D exp[−βN(gD − µ)]dD∫∞

0
exp[−βN(gD − µ)]dD

(6)

The argument of the exponential can be expanded to

βN(gD − µ) =
βπDL(gD − µ)

a0
= βπ

[(
2γ − L

a0

(
3EB

2
+ Ts+ µ

)
+

2B̃L

D2
0

)
D +

2B̃L

D
− 4B̃L

D0

]

= 2βπB̃L

(
4γa0D

2
0 − LD2

0(3EB + 2Ts+ 2µ) + 4B̃La0

4B̃La0D2
0

D +
1

D
− 2

D2
0

)

≡ 2βπB̃L

(
1

D∗2D +
1

D
− 2

D0

)
(7)

D∗ ≡

√
4B̃La0D2

0

4γa0D2
0 − LD2

0(3EB + 2Ts+ 2µ) + 4B̃La0
= D0

[
1 +

(
γ

L
− 3EB + 2Ts+ 2µ

4a0

)
D2

0

B̃

]−1/2

(8)

To simplify the results, we assume that γ
L is negligible in the large L limit. Furthermore, at equilibrium the free energy

per monomer of the geometry that minimizes the free energy (in this case the target geometry) is approximately equal
to the chemical potential µ [5]. Since the bending energy of the target geometry is zero, the equilibrium chemical
potential is approximately −( 3EB

2 + Ts∗) with s∗ the entropy per monomer of the target structure. Assuming the
entropy is roughly independent of geometry, we have(

γ

L
− 3EB + 2Ts+ 2µ

4a0

)
D2

0

B̃
∼= 0 ⇒ D∗ ∼= D0 (9)
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Then, we can perform a saddle point approximation around D = D0, setting

2βπB̃L

(
1

D∗2D +
1

D
− 2

D0

)
∼=

2βπB̃L

D3
0

(D −D0)
2. (10)

This results in the mean diameter ⟨D⟩ = D0. Using Eq. (3), ∆D is then given by

∆D =

√√
3D3

0kBT

6πBL
. (11)

III. ANALYZING THE DYNAMICAL SIMULATIONS

A. Identification of the tubule geometry
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Figure 3. The algorithm for identifying tubule types and determining their distributions. (A) illustrates our search algorithm
for determining the tubule type. The yellow circle shows the origin, while the solid turquoise arrows show the shortest pathway.
(B) shows examples of defect-free, defective tubules and structures that fail to close. In the snapshots, boundary edges are
labeled in cyan. (C) shows the distribution of the fraction of successful searches for 500 simulations run with the same set of
parameters. We perform the search algorithm for all the vertices in the final structure and compute the fraction of successful
searches for each simulation. We identify a structure as a defect-free tubule only when over 80 % of the searches are successful.
Simulation parameters: EB = 6.4 kBT, B = 25 kBT , the target tubule geometry is (15,0). finsert is the attempt frequency of
insert/delete move. finsert = 0.001 for all the figures except for Fig. §14.

We classify the structures that form in the simulations by searching for the shortest path around the circumference
of the structure, moving along the edges of the triangles. Fig. §3(A) illustrates one such path. We choose a random
vertex as the origin. Then, we search for the next vertex connected to the origin by a gray edge, which we call the
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second vertex. The vector pointing from the origin to the second vertex defines the direction of the search. Then,
we search for vertices along either the red or the blue edges and measure the distance between those vertices and the
origin. If those vertices are farther from the origin, we move to the next vertex that is connected through a gray edge.
If those vertices are closer to the origin, we move along the red/blue edge until we reach the boundary or return to
the origin. If the search along red or blue edges reaches the boundary, we move to the next vertex that is connected
through a gray edge. This search continues until we return to the origin or terminates if the last vertex connected
through a gray edge is on the boundary. If the search can return to the origin, we label it as a success, otherwise we
label it as a failure. The lattice numbers m and n are determined by the number of edges traversed on this pathway.
m is the number of the gray edges, while |n| is the number of red or blue edges. n is negative if the pathway follows
blue edges (a left-hand helix) and positive if the pathway follows red edges (right-hand helix).

Fig. §3(B) shows examples of defect-free tubules, defective tubules, and structures that fail to close. To identify
defective tubules and to prevent incorrect identification, we perform the search algorithm described above for every
vertex in the final assembly, and then record the successful search rate (i.e., the fraction of starting vertices for which
the search algorithm is successful). Fig. §3(C) shows a distribution of the fraction of successful searches, measured
for 500 independent simulations under the same parameter set. By comparing the simulation snapshots and the
distribution, we find that the tubes are mostly defect-free around the peak (≈ 0.9 success fraction) and mostly
defective when the fraction of successful searches is below 0.8 or multiple tubule geometries are identified in the same
structure. That is, we identify a structure as defect-free only if more than 80% of the searches find the same tubule
geometry.

B. Diameter measurement
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Figure 4. Measuring the diameters of tubules assembled in simulations. (A) Illustration of the measurement algorithm. The
left panel shows the structure of a stress-free tubule. Lmax (solid line) is the distance between two vertices that are farthest
apart within the same lap, which is the shortest pathway that traverses the circumference of the structure and returns to the
original vertex (dashed line). D is the diameter of the stress-free tubule. RLD is defined as the ratio between Lmax and D
for calibration. To get the diameter of an assembled tubule, we pair vertices that are the farthest apart within the same lap
and measure the distance between those pairs. We compute ⟨Lmax⟩sim by averaging over all paired vertices within the same
lap. The local diameter Dlocal of the assembled tubule in the simulation is computed by ⟨Lmax⟩sim/RLD. We compute the
diameter of the tubule as the mean value of Dlocal computed from all laps within the structure. (B) A detailed diameter
distribution of 500 defect-free tubule structures assembled under the same parameters set. The colors of the bars represent
different tubule geometries. Vertical dashed lines label the diameters of the ideal tubule geometries. Simulation parameters:
EB = 6.0 kBT,B = 25 kBT , the target tubule geometry is (10,0), and ffusion = 0.01.
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Fig. §4(A) shows how we measure the diameter of the tubule structure we obtained from the simulation. Basically,
we perform this measurement by comparing the tubule assembled in the simulation with the stress-free tubule as
solved in the previous section IB. The diameter of the stress-free tubule is well defined because all the vertices are on
the same cylindrical surface. The diameter of the tubule D is defined as the diameter of the cylindrical surface where
vertices sit. On the other hand, we identify the shortest pathway that traverses the circumference of the tubule and
returns to the original vertex (the dashed black line on the right panel in Fig. §4(A)), which we call a lap. Within the
lap, we find vertices that are the furthest apart and define the distance between them as Lmax (labeled by the solid
black line). We compute RLD as the ratio between Lmax and D. RLD is different for different tubule geometries. It
increases as the tubule becomes more chiral. We use RLD to calibrate the local diameter of the tubule assembled in
the simulation.

To get the diameter of a tubule assembled in the simulation, we first identify all the laps within the tubule structure.
Then within each lap, we pair vertices that are the farthest apart and compute ⟨Lmax⟩sim by averaging over all paired
vertices. The local diameter Dlocal of the lap is computed by ⟨Lmax⟩sim/RLD. Finally, we compute the diameter D
of the structure as the mean value of Dlocal computed from all laps within the structure. Fig. §4(B) shows a detailed
distribution of the measured tubule diameter values D. The counts are labelled by color based on the tubule geometry.
We can see that fluctuations of D within the same tubule geometry are small, and the mode of each distribution is
close to the diameter of the ideal tubule geometry (labeled in dashed lines). The fluctuations around each peak come
from thermal fluctuations of each particular tubule geometry itself. The observed fluctuations of tubule width are
thus primarily determined by assembly of different tubule structures, not by our measurement method.

C. Closure size measurement
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Figure 5. Distribution of closure sizes Nclose for different target tubule geometries in simulations and the discrete kinetic model
(Eq.(12) in the main text). Dark and light blue bars represent the distributions measured from the simulations for the indicated
target geometry, while red and orange bars represent the theoretical predictions. Parameter values are: EB = 5.6 kBT,B =
25 kBT, ffusion = 0.001.

In dynamical assembly trajectories, we define the closure size Nclose as the at structure size N at which an edge
fusion move is accepted for the first time in that trajectory. Although it is possible for the fused edge to reopen, the
probability of reopening is low and the error this contributes to the closure size measurement is small. Fig. §5 shows
closure size distributions for different target tubule geometries measured from simulations, compared with the kinetic
model prediction (Section III D of the main text). The mean closure sizes ⟨Nclose⟩ for the target geometries (5,0) and
(10,0) are respectively ⟨Nclose⟩ = 22 and 120. Note that, in addition to target geometry, the closure size distribution
is affected by the binding energy, the bending modulus, and the effective closure frequency ffusion. However, within
the parameter ranges discussed in the main text, the variations in ⟨Nclose⟩ with different values of these parameters
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for a given target geometry are typically small (≲ 20%).
The length of a tubule at the point of closure Lclose can be approximately related to the closure size by

LcloseπD0 = ⟨Nclose⟩a0 (12)

in which D0 is the diameter of the target geometry and a0 is the area of the monomer. By comparing Lclose and D0

at different target geometries, we find Lclose typically varies in the range 1.3D0 ≲ Lclose ≲ 1.7D0. We use 1.5D0 in
the main text for estimating the equilibrium tubule geometry distribution at the closure size.

We find that the closure size predicted by the kinetic model is approximately twice as large as the simulation result
(Fig. §5). We hypothesise this is due to the difference between the preclosure geometry we assume in the model and
the actual geometry of the structure assembled in the simulation. In the model, we assume that the open structure
has a circular shape with a smooth boundary. However, the structure in the simulation has a coarser and more
irregular boundary due to the triangular lattice geometry, entropic edge fluctuations, and the nonequilibrium nature
of assembly trajectories. The boundary roughness and non-circular shape may favor closure of the structure at a
smaller sizes, by bringing distal edges into closer proximity for a given bending energy cost than would be possible
for a perfectly circular structure. Nevertheless, despite this discrepancy the kinetic model reproduces the probability
distribution measured from the simulation with reasonable accuracy.

D. Closure stabilizes the tubule geometry
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(15,0),EB=6.0,B=100

Figure 6. The tubule geometry becomes independent of time after closure. The figure shows the measured tubule geometry as
a function of time for four example trajectories at indicated values of the binding energy, bending modulus, and target tubule
geometry. In all these examples, the assembled tubules are achiral and they have n = 0, and we set m = 0 when the structures
are open. The parameter ffusion = 0.001 for all the examples.

Performing the tubule-geometry identification at different time points along simulation trajectories shows that the
tubule geometry is essentially fixed after closure. Fig. §6 shows identified tubule geometries as a function of time for
a selection of trajectories at different parameter sets. In all cases, once closure occurs, the tubule geometry is fixed
for the remainder of the simulation. This observation is consistent over the full range of parameters that we explore.
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E. Tubule closure probability

Fig. §7 compares the simulation results and kinetic model predictions for the fraction of trajectories that resulted in
closed tubules. Structures that failed to close formed paper roll structures (Fig. §3(B)). Results are shown for indicated
values of the effective closure rate ffusion, which we controlled by varying the frequency of edge fusion/fission attempts.
As ffusion increases by two orders of magnitude, the closure probability increases from 55 % to ∼ 100 %. The kinetic
model predictions capture this trend and nearly quantitatively agree with the simulation results.
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Figure 7. Fraction of simulation trajectories resulting in closed tubules compared against the kinetic model prediction, for
EB = 6.0 kBT,B = 20 kBT , and the target tubule geometry (10,0).

F. Tubule growth rates

To describe the growth dynamics, we define the growth rate kgrow as the steady-state time-derivative of the structure
size N . Fig. §8(A) shows how we measure kgrow. We see that once the tubule structure has closed and filled gaps in
the structure to achieve a roughly steady-state morphology, the net growth rate fluctuates around a constant value.
The fluctuations arise due to stochastic association events and because monomers can detach from the structure (in
particular from the two open ends where monomers have fewer contacts) due to the relatively weak binding energy
EB required for assembly of well-formed tubules. To estimate the net growth rate, we choose a time point τ0 and
perform a local time-average by performing linear regression on N as a function of time τ within a range of 2 × 105

time steps centered at τ0, and compute the slope of the linear fit. Designating the structure size at τ0 as N0, the slope
of this linear fit provides one measurement of the growth rate at size N0. We compute the growth rate by averaging
over 500 measurements under the same parameter for each value of N or Nboundary. We select 2× 105 time steps as
the fitting range because this is typically the smallest time interval for which there is a significant change in N (> 10)
beyond the critical nucleus size NC within the parameter space that we simulated. By choosing the smallest such
time interval, we avoid over-smoothing fine features on the N, τ curve.

Fig. §8(B) shows kgrow as a function of N for different assembled tubule geometries (colored symbols), as well as
points along the trajectories before tubules have closed (open symbols). We observe that kgrow increases with N
before closure and plateaus after closure once the tubule geometry reaches a steady state. The steady-state growth
rate increases with the width of the assembled tubule geometry. The inset of Fig. §8(C) shows that the growth rate
of closed tubules is proportional to m, which determines the tubule diameter and thus the mean value of Nboundary
for a closed structure.
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Figure 8. Measuring the growth rate kgrow from simulation trajectories. (A) Structure size N as a function of elapsed time
step τ (Monte Carlo sweep). The growth rate kgrow is defined as the first order derivative of N with respect to τ , which is
locally time-averaged as described in the text. (B) Measured growth rates for different assembled tubule geometries (indicated
by symbol color) and different target geometries (indicated by symbol type). Points along trajectories before the structure has
closed are indicated by open symbols. Each data point is an average over 500 independent trajectories. (C) Growth rate as a
function of the number of edges on boundary Nboundary. Symbols have the same meaning as (B). The solid line is a linear fit to
the data corresponding to the white circles. In the inset, m is the first lattice number of the assembled tubule geometry (m,n),
with n = 0. The dashed line is a guideline to eyes for a slope of 1. Each data point is an average over 500 measurements.
(D) Growth rate of assembled tubules with geometry (10,0) as a function of binding energy for indicated values of the bending
modulus. Simulation parameters in (A),(B), and (C) are: EB = 5.8 kBT,B = 20 kBT .

To understand these trends, we measured kgrow as a function of the number of boundary edgesNboundary (Fig. §8(C)).
We find that the growth rate increases roughly linearly with Nboundary, but with a non-zero intercept of Nboundary ≈ 7.
The non-zero intercept is reasonable since the growth rate should approach zero as N approaches the critical nucleus
size NC. For this parameter set, NC = 5 monomers, and the number of boundary edges at the critical nucleus size
ranges from 7 ≲ Nboundary ≲ 12, consistent with the observed intercept. We observe that the steady-state growth rate
for closed structures is somewhat larger than that for open structures, but is roughly linearly related to the number
of boundary edges Nboundary. This trend is consistent with stable monomer attachment events at each open edge, as
would be expected for conditions under which monomer addition is significantly biased over monomer detachment.
However, the net growth rate is somewhat smaller for open structures compared to closed structures at the same
value of Nboundary. This trend can be understood from the fact that addition of a monomer with only a single contact
is relatively unstable at these parameter values due to binding entropy penalties. Thus, stable monomer addition
requires formation of at least two contacts. Formation of two (or more) contacts occurs more readily for a closed
structure compared to an open structure due to the larger curvature of the rim in the latter case.

Despite the geometrical differences between open and closed tubule structures, kgrow depends linearly on Nboundary
during growth in both phases. Below closure, considering the limit that the critical nucleus size is small and Nboundary

scales with
√
N before closure, kgrow can be approximated by

kgrow(N) = k0grow
√
N (13)

in which k0grow is a factor that can be measured from the simulation, which depends on B, EB and the attempt
frequency of the monomer insertion/deletion moves. Fig. §8(D) shows the growth rate kgrow of assembled tubules
with geometry (10,0) measured at structure size N = 150 (kgrow becomes independent of size shortly after the tubule
closes). kgrow increases as EB increases and B decreases.
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G. Closure
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Figure 9. Measurement of the closure rate kclose as a function of the bending modulus and closed tubule geometry. (A)
Schematic of the closure process and associated free energy barrier. The edges labeled in magenta are the edges that are about
to close. Starting from a given initial state, the system can close into different tubule geometries, each of which has a different
free energy barrier to closure. (B) (top) Schematic of the process to measure closure rates from Monte Carlo simulations. We
first let the flat sheet relax to an equilibrium distribution by only allowing vertex moves. Then we enable edge fusion/fission
moves and vertex moves and measure the faction of structures that remain open as a function of the elapsed time. Different face
colors represent different tubule geometries that the structure closes into. Different edge colors represent different values of B.
(C) Comparison between the free energy barrier and the estimated bending elastic energy difference between open and closed
structures. The symbols have the same meaning as in (B). The inset compares the elastic energy difference measured from the
simulations and the estimated bending elastic energy difference. Simulation parameters are : EB = 6.0 kBT, ffusion = 0.001,
and the target geometry is (10, 0).

Except when the growing disk has a size commensurate with closure of a stress-free tubule (that is, the diameter of
the disk is related to the preferred diameter of the tubule by Ddisk = πD0 so that when the edges of the disk touch
each other the structure has the stress-free-curvature), there will be a free energy barrier to closure arising from the
bending energy required to adopt a curvature (i.e. monomer-monomer binding angles) that differ from the preferred
geometry. In particular, the disk must curve in such a way that its edges approach each other closely enough to
bind. Once these contacts are made and the monomers bind, then the additional binding energy can compensate the
unfavorable bending energy. Thus, an estimate of the free energy barrier to closure can be obtained by computing the
bending energy difference between the disk at the point just before closure occurs, and in its stress-free state. Here,
we are making the good approximation that we can neglect configurational entropy differences between these states.

Fig. §9(A) shows a schematic of the closure process. Depending on the size of the disk, different tubule geometries
can be formed by closure, and the free energy barrier is a function of both the disk size and the geometry being
formed.

We have used several approaches to compute the closure free energy barrier. First, we measured the closure rates
for an ensemble of unclosed proto-tubule configurations, constructed to have well-formed triangular lattices such as
the ones that occur during assembly dynamics under productive assembly conditions (Fig. §9(B)). The pre-closure
structure that we choose resembles a regular hexagonal geometry if flattend onto the two dimensional plane, yet with
a ’notch’ for accepting the edge fusion move. The reason to choose this spatial configuration is that we have identical
binding energies for all three edges and the growth is nearly isotropic before closure. We can use a pair of numbers
[a, b] to describe the geometry of the pre-closure structure, in which a is the number of triangles along the long
(horizontal) axis and b is the number of triangles along the short (vertical) axis of the flattend pre-closure structure.
The pre-closure structures we use for the closure rate measurement are [8,8], [9,8], [10,10] and [11,10], which assembles
(8,0), (9,0), (10,0), (11,0) tubules when they close. The aspect ratio of these pre-closure structures is roughly held
the same. The target tubule geometry is set to (10,0) for all the closure rate measurements, however, the pre-closure
structure limits the tubule geometries that can assemble via closure.

First, we generate each pre-closure structure as a two dimensional triangular lattice using a home-made MATLAB
code and use that as the initial state in our dynamical simulations. Then, we perform only vertex moves to equilibrate
the configuration at fixed size and topology with the preferred dihedral angles favouring a (10,0) tubule. We performed
104 sweeps to make sure that the pre-closure structure equilibrated. Finally, we allowed both vertex and edge
fission/fusion moves (so that the structure can close), and measured the fraction of structures that remain open as a
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function of elapsed time. We performed this measurement for various diameters (the long axis of the open structure,
which equals the circumference of the closed structure) and B values for a target geometry of (10,0).

The bottom plot in Fig. §9(B) shows that the fraction of open structures decays exponentially as a function of time.
By performing an exponential fit with decay time τc for each data set, we extract the closure rate kclose = 1/τc. We
observe that kclose decreases as the bending modulus B increases or the assembled tubule geometry deviates further
from the target tubule geometry.

Because the measured closure time distributions are exponential, we assume that the closure rate follows the
Arrhenius mechanism, and we estimate the closure free energy barrier ∆G

(m,n)
close from

kclose = k0 exp
(
−∆G

(m,n)
close /kBT

)
with k0 as the closure rate when the diameter of the unclosed structure equals the circumference of the target tubule
geometry.

Fig §9(C) compares the measured ∆G
(m,n)
close to the estimated bending energy difference ∆E

(m,n)
bend . Considering that

all monomers in the open structure have dihedral angles that favor the tubule geometry (m,n), the bending elastic
energy difference between such any configuration and the stress-free configuration ∆E

(m,n)
bend is given by

∆E
(m,n)
bend (N) =

1

4
BN

∑
i=1,2,3

(θ
(m,n)
id,i − θ0id,i)

2. (14)

We observe that ∆G
(m,n)
close ≈ α∆E

(m,n)
bend with 0.3 ≲ α ≲ 0.5 as discussed in the main text. Therefore, the closure rate

can be approximated by,

k
(m,n)
close (N) = k0close exp

(
−α∆E(m,n)

bend /kBT
)
. (15)

In the inset of Fig. §9(C), we also compare the elastic energy difference measured in the simulation ∆E
(m,n)
el to the

bending energy estimate ∆E
(m,n)
bend . We measured ∆E

(m,n)
el as the difference between the elastic energy just before the

structure closed and the average elastic energy of the structure at equilibrium (with fixed size and topology). Notice
that we observe the same scaling, ∆E

(m,n)
el ≈ α∆E

(m,n)
bend , which supports the assumption above that the closure

free energy barrier arises primarily due to the elastic energy difference between the closed and open configurations.
Nevertheless, the measured elastic energy difference is only ∼ 30% of the elastic energy if the entire unclosed structure
adopts a curvature commensurate with the closed structure (inset of Fig. §9(C)). We hypothesize that this discrepancy
arises because the bending is nonuniform and only a few contacts are required to initially stabilize the closed structure.
For the kinetic model, we use α = 0.3 to account for these effects.
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Figure 10. The effect of varying the binding energy EB on tubule assembly geometries, observed in dynamical assembly
simulations. (A) The fraction of defect-free tubules, defective tubules and unclosed structures within the entire population. The
distributions were estimated from 1000 independent simulation trajectories for each value of EB. (B) Geometry distributions
within the defect-free population, for indicated values of EB. The paired numbers with parentheses indicate the tubule
geometry. D0 is the diameter of the ideal (10,0) tubule. Other simulation parameters are: target geometry (10,0), B = 20 kBT ,
ffusion = 0.0001.
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H. The dependence of assembled tubule geometries on binding energy

Fig. §10 shows the geometry distributions of tubules assembled in simulations with target structure (10,0) and
different values of the binding energy EB. As EB increases, the fraction of defect-free tubules decreases, while the
fraction of defective tubules and open structures increases. This is consistent with observations in other self-assembly
systems that the probability of defective structures increases with binding energy because the rate of annealing defects
decreases exponentially with increasing binding energy [6, 7]. However, the geometry distribution within the defect-
free population does not change significantly. This can be understood as follows, based on the results of the kinetic
model (section III of the main text). The tubule closure size is substantially larger than the critical nucleus size for
the parameter regime that we focus on, so the growth dynamics is strongly forward-biased and thus the growth rate
depends only weakly on EB (or µ). Therefore, although the kinetic model predicts that the width distribution will
shift to larger values with increasing growth rate, this effect will be very weak with increasing EB when the closure
size is large compared to the critical nucleus size.

IV. COMPARING GEOMETRY DISTRIBUTIONS OF TUBULES ASSEMBLED IN SIMULATIONS
AND EXPERIMENTS
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Figure 11. Comparison of geometry distributions for tubules assembled in simulations and experiments. (top) Distribution of
geometries of tubules assembled in simulations with indicated values of the bending modulus. The distributions were estimated
from 1000 independent simulation trajectories for each value of B. The pie charts show the fractions of defect-free tubules,
defective tubules, and open structures. For each B, the size and color of each circle in the middle panel indicates the fraction of
the corresponding tubule geometry within the defect-free population. (bottom) Comparison of the tubule diameter distribution
between experiments and simulations with different values of the bending modulus. D0 is the diameter of the ideal (9,4) tubule.
Simulation parameters are: the target geometry is (9,4), EB = 6.0 kBT , B = 5, 10, 15, 20 kBT from left to right, ffusion = 0.001.

Fig. §11 shows the geometry distributions of tubules assembled in simulations with target structure (9,4) and
different values of the bending modulus. A high fraction (∼ 95%) of the assembled structures are defective for
B = 5 kBT . For B ≥ 10 kBT , the majority of tubules are well-formed, with distributions peaked around the target
geometry of (9,4) and the spread comparable to the experimental measurement. As B increases, the distribution of
tubule geometries becomes progressively narrower. The experimental distribution in different panels of Fig.§11 is from
the same measurement
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V. SUPPLEMENTARY INFORMATION ABOUT THE KINETIC MODEL

A. Schematic of the kinetic model

......

<

structure 
boundary

inner side
outer side

Flattened

= >

Figure 12. Schematic illustration of the kinetic model.

Fig. §12 shows the schematic of our kinetic model. Prior to closure, the assembling structure is modeled as a curved
circular disk. The diameter of the flattened disk is Ddisk. The pre-closure structure grows with a growth rate kgrow,
and in the mean time, attempts closure with a closure rate is kclose. The transitions that are marked with red ‘x’
symbols in the diagram are considered low probability, which means that the closed structure does not reopen. D is
the diameter of the closed assembled tubule structure, while D0 is the diameter of the target tubule structure.

B. Determining the compatibility function I
(m,n)
close (N)

I
(m,n)
close (N) is a function that indicates whether a structure of size N is geometrically compatible with closing into a

structure (m,n). We compute I(m,n)close (N) in the following simplified manner. Assuming a circular disk forms a cylinder
geometry by bending around a single axis and closing where the two outermost points meet, the curvature κ of the
closed structure is

κ(N) =
2π

Ddisk
=

√
π3

Na0
. (16)

However, we must account for the fact that only discrete tubule geometries are allowed. In general, closure to many
geometries will require fluctuations from the perfect circular disk that we have assumed thus far. In SI section V C 2
and V D, we perform a calculation in which we explicitly compute the Boltzmann-weighted probability of disk shape
fluctuations in the continuum limit. That calculation and analysis of aspect ratios of unclosed disks within simulation
trajectories show that the magnitude of shape fluctuations is generally small. Therefore, we simplify the calculation
here by neglecting shape fluctuations, but assuming that closure only occurs for geometries that have curvatures close
to the circular disk curvature: κ ∈ [(1− δ)κ(N), (1 + δ)κ(N)]. δ is the cutoff threshold δ, which we determined from
the extent of aspect ratio fluctuations of open structures within simulation trajectories (See Fig.§13 and SI section
V D for details about the aspect ratio fluctuation measurement. Within the parameter space that we have studied,
the surface energy is primarily determined by the binding energy, and the shape distribution of disks near closure size
does not vary dramatically with B. Thus, for simplicity we use the same value of δ for all parameters with the same
target geometry. We use δ = 0.05 for the (10, 0) target.
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The accessibility indicator function is then given by

I
(m,n)
close = Θ

[
1− 1

δ

∣∣∣∣κ(m,n)κ(N)
− 1

∣∣∣∣] (17)

with Θ the Heaviside function.

C. Continuum limit

In the main text, we introduce a discrete kinetic model that reproduces the distribution measured in the simulation.
Here, we perform an analogous calculation in the continuum limit. We find that the resulting model qualitatively
matches the simulation results, but is not as quantitatively accurate as the discrete model.

1. Model without shape fluctuations

First, we assume that the preclosure geometry of the structure is always circular, without shape fluctuations. If
such structure closes, the diameter D of the closed tubule is given by

Na0 =
πD2

disk
4

(18)

⇒ Ddisk = 2

√
Na0
π

(19)

where N is the number of monomers in the assembled structure, a0 is the area of each monomer, and Ddisk is the
diameter of the flattened disk. If the disk closes, Ddisk will equal the circumference of the closed tubule. Thus, the
diameter D of the closed tubule is related to the structure size N by

D =
Ddisk

π
= 2

√
Na0
π3

(20)

In terms of the kinetic rates, we again approximate kgrow by

kgrow(N) = k0grow
√
N (21)

where k0grow is a kinetic factor that can be measured from simulations. The closure rate kclose is approximated by

kclose(N) = k0close exp (−α∆Ebend) (22)

We use the Helfrich energy model to estimate the bending energy differences between tubules with different diame-
ters [8].

∆Ebend = 2B̃Na0

(
1

D
− 1

D0

)2

(23)

where D is the diameter of the tubule that the open structure is about to close into, D0 is the diameter of the target
tubule geometry, and B̃ is the effective bending modulus at the continuum limit, which is related to the bending
modulus B of the discrete triangular lattice by B̃ =

√
3B/2 [4]. The closure rate kclose can be further simplified to

kclose(N) = k0close exp

[
2αB̃Na0

(
1

D
− 1

D0

)2
]

= k0close exp

√3π3αB

(
1−

√
N

N0

)2
 (24)
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D0 and N0 are related by,

D0 = 2

√
N0a0
π

(25)

where k0close is a kinetic factor that can be measured from simulations.
Finally, we evaluate the closure probability as a function of time. In the absence of closure, the structure remains

at each size N for a time ∆t(N) = 1/kgrow(N), and the time at which a structure first grows to size N is tN =∑N−1
i=1 1/kgrow(N). The probability that a structure with size N remains open at a time tN ≤ t < tN+1 is given by

Popen(t,N) = Popen(tN , N) exp [−kclose(N)(t− tN )] . (26)

By summing over the smaller sizes, we can compute the probability that a structure has stayed open until size N as

Popen(tN , N) =

N−1∏
i=1

exp

(
−kclose(i)

kgrow(i)

)
. (27)

The probability for the structure to close at size N is then given by

Pclose(N) =

N−1∏
i=1

exp

(
−kclose(i)

kgrow(i)

)[
1− exp

(
−kclose(N)

kgrow(N)

)]
(28)

Since D and N are related by Eq.20, the width distribution is equivalent to the closure size distribution.

2. Model with shape fluctuations

To incorporate shape fluctuations of the pre-closure structure into the model, we consider the structure before
closure as elliptical rather than circular. The aspect ratio ψ is defined as the ratio between the lengths of the major
and minor axes. The orientation angle ϕ is defined as the angle between the major axis and the direction of the
non-zero principle curvature (the circumferential direction of the tubule once it closes). We assume that ϕ follows a
uniform distribution from 0 to π. Assuming the system is quasi-equilibrated before closure, the distribution f of ψ,
ϕ should follow Boltzmann distribution. According to classical nucleation theory (CNT), the free energy barrier G to
forming an open structure from unassembled monomers can be written as

G = ∆gN + σNboundary (29)

where ∆g is the per-monomer bulk free energy difference between the structure and the fluid phase, σ is the per-
monomer surface free energy, N is the number of monomers in the structure, and Nboundary is the number of monomers
at the structure boundary, which depends on ψ.

Assuming ∆g does not change with ψ, the bulk term depends only on N and the shape distribution is completely
determined by the surface energy of the open structure. The distribution f of ψ and ϕ at size N is given by

f(N,ψ, ϕ) =
1

πZψ
exp

(
−σL(N,ψ)

l0kBT

)
(30)

where Zψ is the partition function obtained by summing over ψ and ϕ, assuming that the latter follows a uniform
distribution, which contributes a factor of 1/π. l0 is the stress-free length of the edge and L(N,ψ) is the perimeter of
the open elliptical geometry, which is given by

Na0 = πab =
πa2

ψ
(31)

L(N,ψ) = 4a

∫ π
2

0

√
1−

(
1− 1

ψ2

)
sin2 θdθ (32)

where a0 is the area of each monomer, a is half the length along the major axis, and b is half the length along the
minor axis. The first equation enforces that the area of the structure is conserved for fixed N . The second equation
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gives the perimeter of the elliptical geometry. The surface energy density σ can be measured from thermodynamic
integration as introduced later in SI section VII.

In terms of the kinetic rates, we again approximate kgrow by

kgrow(N) = k0grow
√
N (33)

where k0grow is a kinetic factor that can be measured from simulations. The closure rate kclose is approximated by

kclose = k0close exp (−α∆Ebend) (34)

We use the Helfrich energy model to estimate the bending energy differences between tubules with different diame-
ters [8].

∆Ebend = 2B̃Na0

(
1

D
− 1

D0

)2

(35)

where D0 is the diameter of the target tubule geometry and B̃ is the effective bending modulus at the continuum
limit defined above. D is the diameter of the tubule that the open structure is about to close into, and is given by

D(N,ψ,ϕ) =
2

π

√
Na0ψ

π(cos2 ϕ+ ψ2 sin2 ϕ)
(36)

This equation is obtained by assuming that the circumference of the closed tubule geometry is equal to the length of
the elliptical geometry along the direction of the non-zero principal curvature.

Finally, we evaluate the closure probability as a function of time. In the absence of closure, the structure remains
at each size N for a time ∆t(N) = 1/kgrow(N), and the time at which a structure first grows to size N is tN =∑N−1
i=1 1/kgrow(N). The probability that a structure with a certain geometry remains open at a time tN ≤ t < tN+1

is given by

Popen(t,N, ψ, ϕ) = Popen(tN , N, ψ, ϕ) exp [−kclose(t− tN )] (37)

By summing over ψ and ϕ, we can compute the probability that a structure with size N remains open at a time
tN ≤ t < tN+1 as

P (t,N)
open = P (tN ,N)

open

∫ ψ=∞

ψ=1

∫ ϕ=π

ϕ=0

f(N,ψ, ϕ) exp[−kclose(t− tN )]dϕdψ (38)

By summing over the smaller sizes, we can compute the probability that a structure has stayed open until size N as

P (tN ,N)
open =

N−1∏
n=1

∫ ψ=∞

ψ=1

∫ ϕ=π

ϕ=0

f(n, ψ, ϕ) exp

(
−kclose(n, ψ, ϕ)

kgrow(n)

)
dϕdψ. (39)

The probability to assemble a tubule geometry with diameter D is then computed by summing over all sizes n that
can close into the diameter D,

Pclose(D) =

∞∑
n=1

P (tn,n)
open

∫∫
SD

f(n, ψ, ϕ)

[
1− exp

(
−kclose(n, ψ, ϕ)

kgrow(n)

)]
dϕdψ (40)

where SD is the subset in parameter space of ψ and ϕ that enables the structure to close with diameter D.

D. Aspect ratio distribution

Fig. §13 compares the aspect ratio distribution of open structures measured from simulations and computed from
the continuum model that considers shape fluctuations (Eqs. (30)-(32)). The structure size is N = 120, which is
also the average closure size of the (10,0) tubule. To measure the aspect ratio distribution in simulations, we first
performed simulations in which the size was allowed to grow to N = 120. Then we changed the preferred dihedral
angles to zero and increased the bending rigidity to B = 400 kBT so that the structures flattened. Then, we rotated
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Figure 13. Comparing the aspect ratio distribution of unclosed structures measured from simulations and predicted by the
continuum model that accounts for shape fluctuations. The inset shows an example of fitting an ellipse to the vertices on the
flattened structure boundary. Simulation parameters: EB = 6.0 kBT,B = 20 kBT, ffusion = 0.001, N = 120, and the target
tubule geometry is (10,0).

the flattened structure to minimize deviations of the vertex positions from the X-Y plane, and fit the positions of the
vertices on the structure boundary to an ellipse. The fitting was performed by minimizing a distance function that
computes the sum of the distances from vertices on the structure boundary to surface of the trial ellipse. The statistics
were collected over 1000 independent simulation trajectories. In the model prediction, the surface energy density σ
is obtained from fitting to the G − N free energy curve introduced later in SI section VII, which gives σ ∼ 4.5 kBT
per monomer. For the simulation measurements, the mean of the aspect ratio distribution is 1.20, which is close to
the aspect ratio of a perfect hexagon ( ∼ 1.15). The standard deviation of the distribution is 0.49. For the model
prediction, the mean and standard deviation of the distribution are 1.12 and 0.13 respectively. Comparing these two
distributions, we find the spread of the model prediction is narrower and the peak is closer 1 (a perfect circle). We
hypothesize this is because the actual pre-closure geometry is a triangulated lattice and it does not have a smooth
boundary, contrary to the model assumption.

E. Accounting for shape fluctuations in the discrete model

For the discrete model in the main text, we introduce a cutoff threshold δ to approximately account for shape
fluctuations. We use δ = 0.05 for the system with target geometry (10,0). If we assume thet the geometry of the
open structure is elliptical, the aspect ratio is 1.1 at the threshold we choose, which is close to the mean of the aspect
ratio distribution given by the model prediction. Furthermore, the fraction of structures that fail to close is sensitive
to δ. Setting δ = 0.05 leads to a close match between the fraction of structures that fail to close between the discrete
model and simulations (see Fig. §7).

F. Comparing the models with and without shape fluctuations to simulation measurements

Figure. §14 compares the tubule diameter distributions estimated from the continuum models with (blue dashed
bars) and without (red solid bars) shape fluctuations against simulation measurements (‘◦’ symbols). We observe that
predictions from both of the models accurately estimate the fraction of the distribution near the mean. However, the
model which accounts for shape fluctuations more accurately describes the skew measured in simulations, in particular
that the skew is biased toward structures that are larger than the mean. We hypothesize that this is because the shape
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Figure 14. Comparison of tubule width distributions from simulations (‘◦’ symbols) and the continuum models with (blue
dashed bars) and without (red solid bars) and without shape fluctuations. Different face colors represent different assembled
tubule geometries. D is the width of the assembled tubule structure. D0 is the width of the target structure. Simulation
parameters: EB = 6 kBT,B = 20 kBT, ffusion = 0.01, finsert = 0.0001, and the target tubule geometry is (10,0). finsert is the
attempt frequency of insert/delete move, finsert = 0.001 for all the figures except for this one.

fluctuations allow the pre-closure structures to close to tubule geometries with larger diameters than are accessible
to a perfect circle. Therefore, when the size of a pre-closure structure is small, the shape fluctuation would drive
the structure to close at a diameter closer to the target diameter D0 because the closure energy barrier is lower,
resulting in a larger mean tubule width when shape fluctuations are accounted for. However, this effect is small
and quantitative; the two models give qualitatively similar predictions throughout the parameter space that we have
studied.

VI. DEPENDENCE OF THE MEAN TUBULE DIAMETER D̄ ON B AND ffusion
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Figure 15. Influence of the bending modulus and edge fusion attempt frequency ffusion on the mean diameter of assembled
tubules in simulations. (A) The effective closure rate (log scale) as a function of B and ffusion (indicated by symbol type). (B)
The mean diameter D̄ as a function of B. D0 is the diameter of the ideal (10,0) tubule, the target tubule geometry is (10,0),
and EB = 6 kBT .

Figure. §15(A) shows that the effective closure rate prefactor (not accounting for the free energy barrier in Eq.(13)
of the main text, Eq. (15) of the SI) increases with the bending modulus increases at fixed ffusion. In principle, the
faster closure rates favor the tubule width distribution to shift to smaller widths (since the tubule rarely reopens once
it closes). However, Figure. §15(B) shows that the mean diameter D̄ increases as B increases, although the effect is
very small. This effect arises because increasing B increases the free energy barrier, thus reducing the closure rate
for tubules with diameters that deviate from D0, thus reducing the probability for premature closure. This elastic
energy effect dominates over the prefactor, and shifts the diameter distribution closer to D0 with increasing B.
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VII. THERMODYNAMIC INTEGRATION

We use an adapted thermodynamic integration method to compute the free energies of different tubule geometries.
Our primary goal is to estimate the bulk and surface free energy densities that are required for the CNT calculation
of the free energy profile as a function of assembly size.
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Evolution
Trajectory

105elapsed 
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10
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Figure 16. Schematic of the thermodynamic integration implementation. The diagram on the left shows the configuration
of the ideal (reference state) cylinder lattice for the Einstein solid. The red circles label the vertices of the ideal lattice for
the Einstein solid reference state, while the blue bonds and white faces correspond to the structure of the model. The initial
configuration for the simulation has each vertex placed at its ideal cylinder lattice position. The vertex positions then relax via
vertex Monte Carlo moves under the Hamiltonian H(λ). The diagram on the right illustrates an example trajectory. The large
solid circles label the positions of the ideal cylinder lattice vertices, while the clouds of small solid circles label the actual lattice
positions at different time steps during the sampling. The color bar of these small solid circles represents the time step. The
motions of particles that interact with the magenta, blue, and orange vertices (in the Einstein sold) are constrained to eliminate
rigid body motions of the entire structure. The particle interacting with the magenta site is fixed at its ideal lattice position.
The particle corresponding to the blue vertex is only allowed to move along the direction that connects between the magenta
and the blue vertices. The particle corresponding to the orange vertex is only allowed to move in the plane that contains the
magenta, blue, and orange vertices.

A. Thermodynamic integration implementation

We implemented thermodynamic integration as follows. First, we construct an ideal solid lattice corresponding to
the helical tubule geometry that our target states are based on. The spatial coordinates of the vertices of the lattice
are computed by the method we introduce in the SI section I B. Then, we apply the following Hamiltonian to the
system,

H(λ) = (1− λ)U0 + λU1 (41)

U0 =
1

2
K

∑
vertices

(r⃗i − r⃗0,i)
2 (42)

U1 =
∑

i∈Bound Edge Pairs

−EB +
1

2
B(θi − θ0,i)

2 +
∑

j∈Edges

1

2
kS(lj − l0,j)

2 (43)

Here λ is a parameter that increases from 0 to 1 during each thermodynamic integration run so that the Hamiltonian
changes from U0 to U1. U0 is an Einstein solid potential, in which each particle is connected to the ideal position of
the lattice vertex with a spring. r⃗i is the instantaneous position of the ith particle, while r⃗0,i is the ideal position of
the lattice vertex that the ith particle is connected to. K is the spring constant of the Einstein solid potential. We
performed thermodynamic integration computations with K = 100 kBT/l

2
0. U1 is the Hamiltonian of our system. In

each thermodynamic integration run, we perform Monte Carlo sampling with only vertex moves allowed to equilibrate
the system at fixed topology. We perform independent runs with λ ranging from 0 to 0.9 with an increment of 0.05
and from 0.9 to 1.0 with an increment of 0.01. For each λ, we equilibrate the structure by performing 106 sweeps,
with the number of vertex moves in a sweep equal to the number of vertices N .
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The free energy difference between our system and the Einstein solid model is given by

F1 − F0 =

∫ 1

0

⟨U0 − U1⟩λdλ. (44)

The integrand is the sample average of the difference between U0 and U1 when the system is evolved under the
Hamiltonian H(λ). U0 and U1 are computed by applying the corresponding potential function to the instantaneous
spatial configuration in the simulation.

One challenge is that, as λ → 1, the Einstein solid potential weakens and the structure undergoes rigid body
translations and rotations, which affect U0 since the coordinates of the ideal lattice are fixed in the lab frame.
Therefore, we use the method introduced in the Ref. [9] to prevent rigid body motions of the structure. We constrain
the motion of three vertices in the structure as shown in Fig. §16. The particle that interacts with the magenta vertex
(in the Einstein solid model) is fixed. The particle that interacts with the blue vertex is only allowed to move along
the direction that connects between the magenta and the blue vertices. The particle that interacts with the orange
vertex is only allowed to move in the plane that contains the magenta, blue, and orange vertices.

The free energy of the constrained Einstein solid model is given by

F0 =
3

2
(Nv − 3) ln

(
Kl20
πkBT

)
+

1

2
ln

(
Kl20
πkBT

)
+ ln

(
Kl20
πkBT

)
=

3

2
(Nv − 2) ln

(
Kl20
πkBT

)
(45)

where Nv is the number of vertices in the structure.

B. Thermodynamic integration results: Free energies of different tubule geometries

We used our thermodynamic integration implementation to compute the free energy ∆G of different tubule geome-
tries assembled with the target geometry (10,0) as a function of the structure size N . Since the number of surface
bonds is fixed and finite, the G−N curve should follow a straight line according to CNT. The bulk free energy density
at finite temperature g(m,n)Tfinite

can then be extracted from the slope of the linear fitting to the G−N curve.
As a comparison against the thermodynamic integration results, we estimate the bulk energy density at zero

temperature g(m,n)T0
as the contribution from the elastic energy, given by

g
(m,n)
T0

= −3

2
EB +

1

4
B
∑

i=1,2,3

(θ
(m,n)
id,i − θ0id,i)

2 (46)

in which EB is the binding energy, i represents different edges of each triangular monomer, θ(m,n)id,i is the ideal dihedral
angle that favours a (m,n) tubule geometry, and θ0id,i is the ideal dihedral angle of the target tubule geometry.

The thermodynamic integration results indicate that the free energy difference between different tubule geometries
primarily arises due to differences in bending elastic energy. Fig. §17 shows that the free energies g(m,n)Tfinite

scale linearly
with the elastic energy estimates g(m,n)T0

, with slope 1, for all structures that we have considered. As B increases,
g
(m,n)
Tfinite

for all tubule geometries generally increases because the entropy loss increases by adding a monomer to the
structure. The difference in g(m,n)T0

between different tubule geometries also increases with B because the difference in
bending energy increases according to Eq. (46). The inset plots the difference between g(m,n)Tfinite

and g0Tfinite
with respect

to the diameter D of the tubule, with B = 20 kBT . The solid curve is the estimation of the bulk energy density
difference ∆gD between a tubule with arbitrary diameter D and the tubule with the same diameter as the (10,0)
tubule based on the Helfrich energy model[8]:

∆gD = 2Ba0

(
1

D
− 1

D0

)2

(47)

in which a0 is the area of the monomer and D0 is the diameter of the target tubule. This model only considers
the bending energy, yet the free energy density difference g(m,n)Tfinite

− g0Tfinite
for most of the discrete tubule geometries

falls onto the curved predicted by the model, except for the chiral tubule geometries such as (9,±1) and (10,±1).
We hypothesis that this effect reflects the inconsistency between the triangular lattice direction and the curvature
direction of the tubule structure itself that arises in chiral structures.

Despite the small geometric effect observed for chiral lattices, the thermodynamic integration results show that the
primary factor determining the tubule free energy density is the bending elastic energy difference between a given
structure and the target geometry as computed from the continuum Helfrich energy. This result also suggests that
the bulk entropy density is similar for different tubule geometries under the same bending rigidity.
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Figure 17. Bulk free energy density of tubule structure (m,n) at finite temperature and zero temperature measured by
thermodynamic integration. The target tubule geometry is (10,0) in this computation. Different colors of symbols’ face
represent different tubule structures (m,n) as shown in the legend. Different colors of symbols’ edge represent different bending
modulus values B. Dashed lines are guidelines to eyes with slopes of 1. The inset shows the difference between the bulk energy
density of an arbitrary tubule geometry (m,n) and the target geometry (10,0) with respect to the diameter D, for B = 20 kBT .
The solid curve is th continuum prediction based on the Helfrich energy model for the tubule structure with diameter D. In
all cases the binding energy EB = 4.5 kBT .

Control parameters
EB/kBT B/kBT Target Structure ffusion

Fig.2 Red and blue trajectory 6.0 20 (10,0) 10−3

Fig.2 yellow trajectory 5.0 20 (5,0) 10−3

Fig.3A left/right 6.0 50/100 (10,0) 10−3

Fig.3B left/right 6.0 20 (10,0)/(5,0) 10−3

Fig.3C left/right 6.0 20 (10,0) 10−4/10−2

Fig.4 Simulation 6.0 10 (9,4) 10−3

Fig.5 △ 6.0 20 (5,0) – (15,0) 10−3

Fig.5 ⃝ 6.0 40 (5,0) – (15,0) 10−3

Fig.5 □ 6.0 60 (5,0) – (15,0) 10−3

Fig.5 ♢ 6.0 80 (5,0) – (15,0) 10−3

Fig.6 blue bar 6.0 20 (10,0) 10−4

Fig.6 yellow bar 6.0 20 (10,0) 10−2

Fig.7 △ 6.0 20 (10,0) 10−4

Fig.7 ⃝ 6.0 20 (10,0) 10−2

Fig.7 □ 6.0 50 (10,0) 10−2

Fig.7 □ 6.0 50 (10,0) 10−2

Fixed parameters
kS/kBT µ/kBT finsert fwedge fusion fcrack fusion

200 −3 10−2 10−4 10−4

Table I. Simulation parameters in the main text Fig.2 – 7
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VIII. SIMULATION PARAMETERS

Table. I presents the parameter values that we used for the simulations shown in the main text. finsert, fwedge fusion
and fcrack fusion are the attempt frequency of the corresponding kinetic moves. (See the following SI Section IX and
X for details about the algorithm and the moves).

IX. COMPUTATIONAL MODEL AND KINETIC MONTE CARLO DETAILS

In this section we provide additional details about the model and Monte Carlo simulations that we used to generate
the results in the main text. The model and algorithm are closely based on ref. [10] and identical to the one used in
ref. [11]. In particular, we consider flexible triangular subunits which can bind to each other along edges with a set
of preferred dihedral angles that set the preferred curvatures of the assembling sheet. Monte Carlo simulations are
performed in the grand canonical ensemble at fixed µV T , with µ the chemical potential of subunits in the bath. Each
Monte Carlo simulation involves a single cluster undergoing assembly and disassembly, with subunits taken from or
returned to the bath respectively, as well as structural relaxation moves.

1. Energies

In the tubule model, each three edges of the triangular subunits are of different types, t(p) = 1, 2, 3, for edge index
p and each edge can only bind to an edge of the same type on a neighboring subunit.

The total energy of the system is given by

E =

3ns∑
p

Epstretch +
1

2

∑
⟨pq⟩

(Epqbend + Epqbind) (48)

where the first sum goes over all edges, with ns the number of subunits in the cluster. The second sum only goes over
bound edges (i.e. non-boundary, adjacent edges, so there are 2nb terms in the sum, with nb as the number of bonds).
The 1/2 factor corrects for double counting.

The stretching energy is defined as:

Epstretch = ks
(lp − l0)

2

2
(49)

where ks is the stretching modulus, lp is the instantaneous length, and l0 is the stress-free (rest) length of an edge.
For the tubule model we set the stretching modulus and rest length equal for all edges.

The bending energy is quadratic in deviations from the preferred dihedral angle:

Epqbend = B

(
θpq − θ

t(p)t(q)
0

)2
2

(50)

with p and q adjacent edges and t(p), t(q) the edge types. B is the bending modulus and is set equal for all edge
types. θt(p)t(q)0 is the preferred dihedral angle between edges with types t(p) and t(q). Since only edges of the same
types are allowed to bind to each other, t(p) = t(q) ≡ t for all adjacent edge pairs pq, and θt(p)t(q)0 ≡ θt0. By adjusting
θt0 independently for all three edge types t = 1, 2, 3 one can tune between different (m,n) target geometries.

The binding energy between two edges p and q (with the same type t(p) = t(q) = t) is given by

Etbind = Etb (51)

Binding energies corresponding to all edges are set equal to E1
b = E2

b = E3
b ≡ Eb.

In addition to the above terms, each subunit has at its center of mass a spherical excluder of radius 0.2l0 to prevent
subunit overlaps. Finally, to prevent extreme distortions of subunits, maximum edge length fluctuations are limited
to l0/2 < l < 3l0/2.
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2. Coarse-graining

Our model is motivated by the triangular DNA origami subunits developed in Sigl et al.[1], in which subunits
bind through lock-and-key ‘patches’ along subunit edges in which attractive interactions are generated through blunt-
end stacking of unsatisfied nucleotides. Therefore, in our model we define attractive bonds along subunit edges. In
particular, attractive bonds occur at each shared pair of subunit edges with the same type. Because the interactions
in the experimental system are driven by nucleotide stacking, they are extremely short-ranged in comparison to the
subunit size (the subunit edge lengths are approximately 60 nm). Therefore, in our simulations we avoid resolving
the short length scale fluctuations in separation distance between bound edges and their associated vertices by coarse-
graining as follows.

A microstate i is defined as the position of all the 3ns vertices of ns subunits: i → (x⃗1, x⃗2, ...x⃗3ns) The grand
canonical probability density of finding the system around state i is

f(i) =
P (x⃗1, x⃗1 + dx⃗1; ...; x⃗1, x⃗ns + dx⃗ns)

dx⃗1dx⃗2...dx⃗3ns

=
1

ZΩ

eβnsµ

λ9ns
e−βEi (52)

where µ is the chemical potential and λ3 is the standard state volume. This probability density has the dimensions
of 1/volume3ns corresponding to all the 3ns vertices of the subunits. Due to bonds, however, some pairs of vertices
are confined within a binding volume va. We consider a square-well potential so that the binding energy is constant
within this volume. Analogous to Ref. [10], we can then coarse-grain to avoid resolving intra-bond fluctuations. We
assume that fluctuations of bound edges are sufficiently small that each pair of vertices at either end of a bound edge
pair are constrained within a binding volume va. Note that we constrain vertices rather than edges so that the coarse-
grained microstate can be represented in terms of positions of vertices rather than edges, which is easier to implement
computationally. In the coarse-grained system, a coarse microstate is specified by the coordinates corresponding to the
independent vertex degrees of freedom (with 1 degree of freedom for each bound vertex group and unbound vertex):
Γ → (x⃗1, x⃗2, ...x⃗nv), where nv is the number of independent bound vertex groups and free vertices. The probability
of such a coarse-grained state is given by the net weight of all the corresponding fine-grained microstates:

ρ(Γ) =

∫
{va}

f(i)dnVB x⃗ (53)

where nVB is the number of vertex-bonds and is given by nVB = 3ns − nv. For simplicity, we take the limit in which
3
√
va is small in comparison to the length scale over which the elastic energy varies, so that the energy is constant

within the bound volume va. Then f(i) is a constant, and the probability density is given by

ρ(Γ) =
1

ZΩ
vnVB
a

eβnsµ

λ9ns
e−βEΓ (54)

where EΓ is the total energy of state Γ (including stretching, bending and binding energies). The coarse graining
process is illustrated in Fig.§18.

3. Implementation and data structure

The simulation is implemented on top of the OpenMesh library [12]. Subunits are implemented as triangular mesh
elements. OpenMesh uses the halfedge data structure which is suitable to implement triangles with directed normals
(Fig.§19). The directed halfedges allow for a clockwise iteration through the boundary of a triangle, which makes
the two faces of the triangles distinguishable. Only halfedges with opposite orientations can bind together, making it
impossible to form a Mobius strip, for example. The data structure and the resulting iterators in OpenMesh allow for
an easy and efficient iteration over the neighborhood of mesh elements (vertices, edges and faces). The implementation
of mesh element rearrangements is less straightforward, but we implemented it via the insertion and removal of virtual
triangles. In addition, OpenMesh allows for the storage of various properties on mesh elements, allowing storage of
edge types and face types stored on the elements. To improve readability in the upcoming sections, we will not
represent halfedges separately.

X. THE MONTE CARLO MOVES

In this section we detail the Monte Carlo moves of the simulation. Our algorithm has 11 moves: vertex displace-
ment, simple subunit insertion/deletion, wedge insertion/deletion, wedge fusion/fission, crack fusion/fission, and edge
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Figure 18. Coarse-graining of an example cluster configuration. In this configuration, the number of subunits is ns = 5, the
number of initial (before coarse-graining) vertices is 3ns = 15, and the number of vertices after coarse-graining is nv = 7. The
red circles indicate bound vertex groups, and the number of vertex degrees of freedom that have been eliminated by coarse-
graining in this configuration is nVB = 1 + 3 + 2 + 2 = 8 = 3ns − nv. Motivated by DNA origami subunits in Sigl et al. [1],
the attractive interactions (i.e. ‘bonds’) in this model occur along edge-pairs of the same type shared by two subunits. In this
configuration there are nb = 4 bonds.

Figure 19. The halfedge data structure used by OpenMesh. Each edge is represented by two directed edges. Boundary edges
are no exception and thus are represented by a non-boundary halfedge and a boundary halfedge (in green). This latter is
irrelevant for our model. Directed edges allow for the unambiguous definition of face normals, for efficient iterations of the
element’s neighborhood as well as boundary iterations.

fusion/fission.

Detailed balance. For the transition between state Γ and Γ′ detailed balance corresponds to [10, 13]:

P (Γ)× α(Γ → Γ′)× pacc(Γ → Γ′) = P (Γ′)× α(Γ′ → Γ)× pacc(Γ
′ → Γ) (55)

where α(Γ → Γ′) is the probability of generating a Γ → Γ′ move attempt (trial), pacc(Γ → Γ′) is the probability of
accepting the move, and P (Γ) = ρ(Γ)dnv(Γ)x⃗ is the equilibrium probability of finding a system in a voxel of volume
dnv(Γ)x⃗.

Next, we use Eq. (55) to define the acceptance criteria for each MC move. The acceptance criteria are derived in
detail for the wedge fusion/fission move; the steps to follow are the same for all other moves.
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Figure 20. Vertex move. A vertex is randomly displaced and the move is accepted according to the usual Metropolis probability.

A. Vertex displacement

In this move, a vertex is randomly selected, a random uniform displacement is drawn, and the vertex is displaced
to its new position according to:

x→ x+ U(−dmax, dmax) (56)
y → y + U(−dmax, dmax) (57)
z → z + U(−dmax, dmax) (58)

with dmax the maximum displacement. The move is accepted with a probability pacc = exp(−∆E/kBT ) where ∆E
is the (bending plus stretching) energy change due to the displacement. The parameter dmax can be adjusted during
a burn-in period to optimize convergence to equilibrium. Generally optimal values are on the order of the typical
length scale of thermal fluctuations dictated by the elastic energy, leading to acceptance probabilities on the order of
50%. In our simulations typical values are between dmax = [0.01l0, 0.1l0]. The vertex displacement move is illustrated
in Fig.§20: the number of subunits ns, number of vertices nv, number of vertex bonds nVB and number of bonds nb
remains unchanged during this move.

Throughout the article, we define a Monte Carlo sweep as the number of steps required for the system to have
undergone (on average) nv vertex moves, with nv the number of vertices in the structure. One sweep is one time step in
our simulation. The other kinetic moves are attempted less frequently than the vertex moves. Denoting fv as the vertex
move attempt frequency, monomer insertion/deletion moves are attempted with frequency fi = 10−3fv, while wedge
fission/fusion and crack fission/fusion moves are attempted with frequency fwf = fcf = 1̨0−4fv. Edge fission/fusion
moves are attempted as specified in the main text, controlled by the parameter ffusion. The attempt frequency of
other moves is fixed throughout all the simulations reported in this work. While the acceptance probabilities are
different for different types of moves, they all guarantee detailed balance as shown below.

B. Simple insertion / removal

1. Simple insertion

In this move, an edge is randomly selected from the set of all boundary edges, where a new subunit will be attached.
The number of such boundary edges is ne. Subunits can be inserted in nr different rotations, where nr is the number
of distinct rotational states for a subunit which has one edge aligned with the edge of a neighboring subunit. For
our triangular subunits with three distinct edge types, nr = 3. In our algorithm, during insertion of a subunit its
rotational state is chosen randomly from the set of three possibilities. If the aligned edge is not complementary to
the type of the boundary edge, then the move is rejected. In this work, the two edges must be of the same type to be
complementary.
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The positions of two of the new subunit’s vertices (those at either end of the edge being bound) are set equal to
the positions of the corresponding vertices of the boundary edge to which it is binding. The third vertex position is
randomly chosen from within a volume vadd centered at the equilibrium position of the new vertex.

Thus, the attempt probability for a simple insertion is given by:

α(i→ j) = nefiτnr ×
1

nenr(vadd/dx⃗)
. (59)

Then, applying Eq. (55) and the attempt probability for the reverse move (simple deletion, presented next, Eq. (61)),
the acceptance probabilities for a simple insertion is

pacc(i→ j) = min

[
1,
v2avadd

λ9
exp[−(∆Ei→j − µ)/kBT ]

]
. (60)

∆Ei→j is the energy change due to the move and includes the stretching energy of the newly inserted subunit, its
bending energy along the shared edge, and the binding energy due to the creation of an extra bond. During this
move, one new (edge) bond and two new vertex bonds are created; i.e. nb → nb + 1 and nVB → nVB + 2. Moreover,
the number of vertices in the structure increases by one, nv → nv + 1.

2. Simple removal

The reverse move to simple insertion is simple removal. Subunits that can be deleted with this move are those
with two boundary edges. The number of simply removable subunits is nsr. One of these is selected randomly, so the
attempt probability is

α(j → i) = nsrfiτ ×
1

nsr
(61)

and, using Eq. (55) and Eq. (59), the acceptance probability is

pacc(j → i) = min

[
1,

λ9

v2avadd
exp[−(∆Ej→i + µ)/kBT ]

]
(62)

During this move, the structure loses one (edge) bond and two vertex bonds; nb → nb − 1 and nVB → nVB − 2. The
number of vertices in the structure decreases by one, nv → nv − 1.

If there are multiple species with chemical potentials µk, detailed balance must be satisfied for each species, indi-
vidually. Moreover, each species can have different insertion rates fki .

To keep α < 1, we ensure that the insertion rate fi constrained by

nefiτnr < 1 (63)
nsrfiτ < 1 (64)

In equilibrium, one can use adaptive rates, i.e. reduce ki on the run if the above condition is not satisfied. In that
case, sampling is not taken for the ensuing several time steps. Alternatively, the rates may be set to a low enough
value from the beginning and only tested on the run to ensure that the α < 1 condition is satisfied. This latter
technique is appropriate for dynamical runs as it keeps the rates constant throughout the simulation.

Moreover, we must ensure that vadd is large enough so that the vertex does not leave the vadd volume during
structural relaxation moves; otherwise the insertion/deletion moves would not be reversible and the detailed balance
would be violated. For a better convergence, one could choose a gaussian distribution N (r⃗) for the position of the
new vertex instead of a uniform distribution 1/vadd. In this case, this distribution has to be accounted for in the
acceptance probabilities pacc(i→ j) and pacc(j → i).

C. Wedge insertion/removal

1. Wedge insertion

Wedges are positions in the structure where a triangle can be inserted via attaching to two edges (Fig. §22). In
a wedge move, we pick randomly from the set of available wedge positions in the structure, and pick a random
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Figure 21. Simple insertion and removal.

orientation for the new subunit. Denoting the number of wedge positions in a given structure as nw, the attempt
probability for a wedge move is

α(i→ j) = nwfiτnr ×
1

nrnw
(65)

In contrast to the simple insertion move, there is no need for random vertex displacement in a wedge move because
all three vertices of the new subunit are fixed by the three vertices of the wedge position. Combining Eq. (65) and
the attempt probability for wedge removal (Eq. (67)), The acceptance probability for a wedge insertion is

pacc(i→ j) = min

[
1,
v3a
λ9

exp[−(∆Ei→j − µ)/kBT ]

]
. (66)

During a wedge insertion, two edge bonds and three vertex bonds are created; i.e., nb → nb + 2 and nVB → nVB + 3,
but the number of vertices is unchanged, nv → nv. ∆Ei→j includes the binding energy of the two newly formed
bonds, the two bending energies along the two newly bound edges and the stretching energy of the newly inserted
subunit.

2. Wedge removal

The reverse move of wedge insertion is wedge removal. In a wedge removal, we randomly choose one of the removable
wedges from a given structure. With the number of removable wedges as nwr, the attempt probability is

α(j → i) = nwrfiτ ×
1

nwr
. (67)

Using Eq. (65), the acceptance probability for a wedge removal is then

pacc(j → i) = min

[
1,
λ9

v3a
exp[−(∆Ej→i + µ)/kBT ]

]
. (68)

We have the following constraints on rates fi for wedge insertion/removal:

nwfiτnr < 1 (69)
nwrfiτ < 1 (70)

As for simple insertion and removal, in the case of multiple species, detailed balance is satisfied for each species
separately for wedge insertion/removal.

D. Wedge fusion / fission

1. Wedge fusion

In this move, a fusable wedge is closed, without inserting a new subunit (Fig.§23). That is, the two vertices on
either side of the wedge opening are merged into a single vertex. Fusable wedges are vertex pairs that i) form a wedge
(as in the case of wedge insertion) and ii) are within a separation distance of lfuse.
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Figure 22. Wedge insertion and removal.

Denoting the number of fusible wedge positions as nw, in each MC step, a wedge fusion is attempted with probability
nwfwfτ , where fwf is an adjustable parameter controlling the relative probability of attempting wedge fusion. Then,
a wedge position is selected randomly from the set of all nw fusible wedges. The attempt probability is thus

α(i→ j) = nwfwfτ ×
1

nw
. (71)

Using Eqs. (71) and (73), the acceptance probability for fusion moves is

pacc(i→ j) = min

[
1,

va
vfuse

exp(−∆Ei→j/kBT )

]
(72)

where vfuse = (4π/3)(lfuse/2)
3 is the volume of a sphere with diameter lfuse, and ∆Ei→j is the energy change due to

the fusion, including changes in bending, stretching, and binding energies. A fusion move increases the number of
edge bonds and vertex bonds by one, nb → nb+1 and nVB → nVB+1; the factor of va appears in Eq. (72) to account
for the latter.

2. Wedge fission

Wedge fission, in which a wedge is opened, is the reverse of the wedge fusion move. Fissionable edges are those
edges that can be split along their boundary vertex to obtain a wedge. Denoting the number of such edges as nf, the
probability of attempting a wedge fission move during an MC step is nffwfτ . If a fission move is attempted, then an
edge is selected randomly from the nf fissionable edges. The position of one of the new vertices is selected randomly
within the sphere of volume vfuse centered at the original position of the merged vertices, and the other new vertex
is placed in the opposite direction from the original position, at the same distance. Thus, the attempt generation
probability is

α(j → i) = nffwfτ ×
1

nf(vfuse/dx⃗)
(73)

and the acceptance probability is

pacc(j → i) = min

[
1,
vfuse

va
exp(−∆Ej→i/kBT )

]
(74)

We verify that detailed balance holds between wedge fusion and fission as follows. There are two cases to consider:

1. (vfuse/va) exp(−∆Ej→i/kBT ) < 1 ⇔ (va/vfuse) exp(−∆Ei→j/kBT ) > 1

In this case, pacc(i→ j) = 1 and pacc(j → i) = (vfuse/va) exp(−∆Ej→i/kBT ). Then

Pi × α(i→ j)× pacc(i→ j) =
1

ZΩ
v
nVB,i
a exp[−(Ei − µns,i)/kBT ]

1

λ9ns,i
× dnv,i x⃗× kwfτ (75)
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Figure 23. Wedge fusion and fission.

and

Pj × α(j → i)× pacc(j → i) =
1

ZΩ
v
nVB,j
a exp[−(Ej − µns,j)/kBT ]

1

λ9ns,j
× dnv,j x⃗ (76)

× kwfτdx⃗/vfuse × (vfuse/va) exp(−∆Ej→i/kBT )

(77)

Using: ∆Ej→i = Ei−Ej , ns,i = ns,j (because the move leaves the subunit number unchanged), nVB,i = nVB,j−1
(one vertex bond is broken upon fission) and nv,i = nv,j +1 (an extra vertex is being born upon fission), we see
that the two are equal and detailed balance holds.

2. (vfuse/va) exp(−∆Ej→i/kBT ) > 1 ⇔ (va/vfuse) exp(−∆Ei→j/kBT ) < 1

In this case, pacc(i→ j) = (va/vfuse) exp(−∆Ei→j/kBT ) and pacc(j → i) = 1. Then

Pi × α(i→ j)× pacc(i→ j) =
1

ZΩ
v
nVB,i
a exp[−(Ei − µns,i)/kBT ]

1

λ9ns,i
× dnv,i x⃗× kwfτ (78)

× (va/vfuse) exp(−∆Ei→j/kBT ) (79)

and

Pj × α(j → i)× pacc(j → i) =
1

ZΩ
v
nVB,j
a exp[−(Ej − µns,j)/kBT ]

1

λ9ns,j
× dnv,j x⃗ (80)

× kwfτdx⃗/vfuse

(81)

Using again ∆Ej→i = Ei − Ej , ns,i = ns,j , nV B,i = nVB,j − 1 and nv,i = nv,j + 1, detailed balance holds.
Note that detailed balance is satisfied regardless of the values of fwfτ or vfuse, but as with all of the move frequencies

these parameters can be optimized during burn-in to accelerate convergence to the equilibrium distribution P (i). In
our simulations, we find that the optimal value of vfuse is on the order of the optimal value of dmax for analogous
reasons: if vfuse is too small there will be very few vertex pairs identified as fusable, so nw will be low. If vfuse is too
large, there will be many fusion candidates but most fusion attempts will be rejected due to the large elastic energy
change necessary for the merging deformation.

Most importantly, we note the constraint on the parameters fwfτ to ensure that generation probabilities do not
become larger than unity. Because each attempt is generated as a three step process, using three probabilities, one
has to ensure that all those probabilities are less than 1. Specifically,

nwfwfτ < 1 (82)
nffwfτ < 1. (83)
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Figure 24. Crack fusion and fission.

E. Crack fusion / fission

1. Crack fusion

Crack fusion closes a crack within the structure; i.e., two adjacent pairs of edges are merged (Fig.§24). Cracks
are identified as 4-edge-length holes inside the structure. If the vertices of the hole are labeled A, B, C, D then the
polygon ABCD forms a closed loop (see Fig.§24). The crack can be closed by either merging vertices A and C (and
correspondingly edges CD to DA and AB to BC) or by merging vertices B and D (and correspondingly edges AD
to AB and CD to CB). Each 4-edge-length loop thus defines two potential fusable cracks. However, an additional
condition for a crack to be fusable is that its merging vertices must be within a distance lfuse (A and C or D and B
in this example). In this work, we have set the crack fusion volume to be the same as that for wedge fusion to reduce
the number of parameters, but it is not necessary that they be the same.and the acceptance probability is

pacc(i→ j) = min

[
1,

va
vfuse

exp(−∆Ei→j/kBT )

]
(84)

There are two edge bonds and one vertex bond formed during a crack fusion.

2. Crack fission

The reverse move for crack fusion is crack fission. With the number of potential cracks as ncf:

α(j → i) = ncffcfτ ×
1

ncf(vfuse/dx⃗)
(85)

pacc(j → i) = min

[
1,
vfuse

va
exp(−∆Ej→i/kBT )

]
(86)

As for the case of wedge fusion/fission, the crack fusion attempt frequency parameter fcf is constrained by the
conditions maintaining probabilities smaller than unity:

ncfcfτ < 1 (87)
ncffcfτ < 1 (88)

(89)

F. Edge fusion / fission

1. Edge fusion

During this move two non-neighbor edges are fused (Fig.§25). Fusable edges are non-neighboring edge pairs whose
corresponding vertices are within a separation distance lfuse. Since edges are directed, they can only fuse such that,
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Figure 25. Edge fusion and fission.

after fusion, they point in the opposite direction. Assuming the edges to be fused are A → B and C → D (see
Fig.§25), vertex A will merge into vertex D and vertex B will merge into vertex C. Edges are counted as fusable if
A is within a distance lfuse to D and B is also within a distance lfuse to C. The attempt probability is analogous to
that for wedge and crack fusion/fission,

α(i→ j) = neffusionτ ×
1

ne
(90)

with ne the number of fusable edges and ffusion the edge fusion frequency parameter. The acceptance probability is

pacc(i→ j) = min

[
1,

(
va
vfuse

)2

exp(−∆Ei→j/kBT )

]
(91)

During edge fusion, one edge bond and two vertex bonds are created.

2. Edge fission

Edge fission is the reverse move of edge fusion. nef is the number of breakable edges, that is, those edges that have
both vertices on the boundary and which would not result in breaking the structure apart.

α(j → i) = nefffusionτ ×
1

nef(vfuse/dx⃗)2
(92)

The factor 1/(vfuse)
2 arises because we must select a random position for each pair of vertices, independently. The

acceptance probability is then

pacc(j → i) = min

[
1,

(
vfuse

va

)2

exp(−∆Ej→i/kBT )

]
. (93)

To maintain probabilities within unity, the edge fusion frequency parameter ffusion is constrained by

neffusionτ < 1 (94)
nefffusionτ < 1. (95)

XI. SUPPLEMENTARY VIDEOS

Movie S1. Kinetic Monte Carlo simulation trajectory corresponding to the red trajectory in Fig.1:
EB = 6.0 kBT,B = 20 kBT, ffusion = 0.01, target structure is (10,0).
Movie S2. Kinetic Monte Carlo simulation trajectory corresponding to the blue trajectory in Fig.1:
EB = 6.0 kBT,B = 20 kBT, ffusion = 0.01, target structure is (10,0).
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Movie S3. Kinetic Monte Carlo simulation trajectory corresponding to the yellow trajectory in Fig.1:
EB = 5.0 kBT,B = 20 kBT, ffusion = 0.01, target structure is (5,0). The playback speed is 10 times faster than Movie
S1 and Movie S2.
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