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FIG. S1. Flow curves for linear (a) and branched (b) WLM solutions obtained via commercial TC

cell and the Rheo-optical cell confirming that they are not changed by the addition of mica flakes

or seeding particles.

I. FITTING FUNCTION FOR ESTIMATION OF THE SHEAR RATE

INHOMOGENEITY PARAMETER

As discussed in the main text, computing the local shear rate accurately from an experi-
mentally obtained velocity profile by purely numerical means is challenging. However, if the
velocity data follows a known analytical expression, one can instead fit the expression to
the data, then compute the necessary derivative(s) analytically. For two-shear-band profiles,
whether transient or quasi-steady, a suitable expression for the shear rate is a sigmoidal
function:

γ̇(x) = γ̇l +
γ̇h − γ̇l

1 + exp [(x− xi)/w]
, (S1)

where γ̇h and γ̇l are the local shear rates in the high and low shear rate bands, xi is the location
of the interface between the high and low shear bands, and w is a parameter representing
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FIG. S2. Example plot showing fitting methods for quantifying ∆. Shown are rheo-PTV raw data

obtained for linear WLMs at Wi = 50 and γ = 136 (blue dots), space-time element averages (empty

orange circles), sigmoidal shear banding velocity profile fitted to the raw data (continuous green

line), and velocity profile estimated from piecewise linear fitting to the raw data (dashed red lines).

the interface width. If the curvature is small enough that the flow field can be approximated
as rectilinear with γ̇ = −dv/dx, the local velocity profile v can be computed analytically as
follows:

v(x) = C − γ̇lx+ (γ̇h − γ̇l)

{
w log

[
1 + exp

(
x− xi

w

)]
− (x− xi)

}
, (S2)

where C is the constant of integration and can either serve as an additional fitting parameter
to allow for wall slip or be defined such that v(x = 0) = vi. Following the determination
of parameters by fitting Equation S2 to the experimental data, computing the shear rate
inhomogeneity parameter ∆ is straightforward. There are no local maxima or minima in
Equation S1; therefore, γ̇max and γ̇min can be replaced with the local shear rates at the inner
and outer cylinders:

∆ =
|γ̇(x2 = 0)− γ̇(x2 = d)|

vi/d
(S3)

In cases where there is wall slip, the denominator in Equation S3 is modified by replacing vi
with v(x2 = 0)− v(x2 = d); however, no wall slip was observed in this study.

For a Newtonian fluid, the shear rate in the cylindrical Couette geometry can be analytically
obtained from the Navier-Stokes equation as follows:

γ̇(r) =

∣∣∣∣r ∂

∂r

(v
r

)∣∣∣∣ = 2RiRo
2

Ro
2 −Ri

2

vi
r
, (S4)

where r = x2+Ri. Consequently, the shear rate inhomogeneity parameter for the Newtonian
fluid is a constant ∆N = 2d

Ri
= 0.176.
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II. ADDITIONAL RHEOLOGICAL PROPERTIES OF THE WORMLIKE

MICELLAR SOLUTIONS

In addition to the flow curves and the Cole-Cole plots reported in the main body of the
manuscript, in Fig. S3(a), we show the viscosity of the micellar solutions measured as a
function of shear rate along with the best fit to the Carreau-Yasuda model (solid curves). The

Carreau-Yasuda model expression is η(γ̇) = (η0 − η∞) [1 + (λcγ̇)
a](n−1)/a + η∞ [K. Yasuda,

et al., Rheol. Acta, 1981, 20, 163.], and the model parameters are listed in Table. S1 below.
In addition, Fig. S3 (b) shows the SAOS results in terms of the storage and loss moduli as
a function of angular frequency for both linear and branched micellar solutions.

In addition, the elasticity number E is calculated for both solutions as E = Wi/Re = η0λ/ρd
2

and the data are shown for both linear and branched micellar solutions in Table S1. Note
that the relaxation times of these fluids are obtained by fitting a single-mode Maxwell model
to the SAOS data.

Micellar system η0 [Pa.s] η∞ [Pa.s] λc [s] a n λ [s] G0
N [Pa] E

Linear 36.3 2.3×10−2 113 2.92 0.0 74.0 0.5 1.93 × 106

Branched 36.8 3.6×10−2 54 1.78 0.0 63.6 0.57 1.69 × 106

TABLE S1. Carreau-Yasuda model parameters, relaxation time, and elasticity number for the

selected linear and branched WLM solutions.

FIG. S3. (a) Viscosity as a function of Wi for the selected linear and branched WLM solutions

showing that there is a shear stress plateau with power law index equal to zero for both. The solid

curves are the best fits of the Carreau-Yasuda model to the experimental data with parameters

given in Table S1. (b) Storage (filled symbols) and loss (empty symbols) moduli as a function of

dimensionless angular frequency for the selected linear and branched WLM solutions.
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III. ADDITIONAL FIGURES

FIG. S4. Normalized NMR signal intensity of the water peak as a function of diffusion weighting in

linear and branched WLMs. Lines are best fits to a mono-exponential decay for α =1. The mean

square displacement Z = 2DTdiff , where D is the apparent diffusion coefficient. Based on this

fitting the diffusion coefficient of water D = 2.2× 10−9 m2/s both for linear and branched WLMs.

This value is close to reported diffusion coefficient of water D ≈ 2.1×10−9 m2/s at T = 21◦C [1, 2].
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FIG. S5. Selected velocity profiles for linear WLMs with first, second, and third order derivatives

estimated by local third-order polynomial fitting. The smoothing parameter p is 0.2.
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FIG. S6. Selected velocity profiles for branched WLMs with first, second, and third order derivatives

estimated by local low-order polynomial fitting. The smoothing parameter p is 0.2.
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FIG. S7. Evolution of wall slip for Wi = 50 (broad lines) and 200 (narrow lines) for linear and

branched WLM solutions. Fluid velocities at the inner (v/Ui ≈ 1) and outer (v ≈ 0) cylinders

estimated from piecewise linear fitting are plotted; horizontal lines indicate the velocity of each

wall.

FIG. S8. Quasi-steady fluid velocity at each wall estimated from piecewise linear fitting for linear

and branched WLM solutions at the inner (v ≈ 1) and outer (v ≈ 0) cylinders. For linear WLMs at

Wi = 5, the high shear rate band is very narrow (see Fig. S9) and cannot be accurately extrapolated

to the wall.
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FIG. S9. Local velocimetry of linear and branched WLMs at applied Wi = 5: (a) shear stress

evolution with shear strain, (b,c) selected velocity profiles for (b) linear and (c) branched WLMs,

(d,e) maps of local velocity evolution with shear strain, (f) evolution of the shear rate inhomogeneity

parameter ∆ with shear strain. In subfigure (f), ∆ values are not reported in linear wormlike

micelles for γ > 6. This is because the width of the high shear band is thin and cannot be resolved

in experiments, which in turn makes the accurate estimation of ∆ difficult.
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FIG. S10. Local velocimetry of linear and branched WLMs at applied Wi = 2000: (a) shear stress

evolution with shear strain, (b,c) selected velocity profiles for (b) linear and (c) branched WLMs,

(d,e) maps of local velocity evolution with shear strain.
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FIG. S11. Flow stability visualized with mica flakes for linear and branched WLMs at Wi = 0.2.

(a) Shear stress evolution with shear strain. (b) Visualized flow with increasing shear strain for

linear WLMs. (c) Visualized flow with increasing shear strain for branched WLMs.



11

FIG. S12. Flow instabilities visualized with mica flakes for linear and branched WLMs at Wi = 500.

(a) Shear stress evolution with shear strain. (b) Visualized flow with increasing shear strain for

linear WLMs. (c) Visualized flow with increasing shear strain for branched WLMs.
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FIG. S13. Flow instabilities visualized with mica flakes for linear and branchedWLMs atWi = 2000.

(a) Shear stress evolution with shear strain. (b) Visualized flow with increasing shear strain for

linear WLMs. (c) Visualized flow with increasing shear strain for branched WLMs.


